Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):555–563.

Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse.

F Papes 1, E L Kemper 1, G Cord-Neto 1, F Langone 1, P Arruda 1
PMCID: PMC1220675  PMID: 10567240

Abstract

Lysine-oxoglutarate reductase and saccharopine dehydrogenase are enzymic activities that catalyse the first two steps of lysine degradation through the saccharopine pathway in upper eukaryotes. This paper describes the isolation and characterization of a cDNA clone encoding a bifunctional enzyme bearing domains corresponding to these two enzymic activities. We partly purified those activities from mouse liver and showed for the first time that both a bifunctional lysine-oxoglutarate reductase/saccharopine dehydrogenase and a monofunctional saccharopine dehydrogenase are likely to be present in this organ. Northern analyses indicate the existence of two mRNA species in liver and kidney. The longest molecule, 3.4 kb in size, corresponds to the isolated cDNA and encodes the bifunctional enzyme. The 2.4 kb short transcript probably codes for the monofunctional dehydrogenase. Sequence analyses show that the bifunctional enzyme is likely to be a mitochondrial protein. Furthermore, enzymic and expression analyses suggest that lysine-oxoglutarate reductase/saccharopine dehydrogenase levels increase in livers of mice under starvation. Lysine-injected mice also show an increase in lysine-oxoglutarate reductase and saccharopine dehydrogenase levels.

Full Text

The Full Text of this article is available as a PDF (300.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameen M., Palmer T., Oberholzer V. G. Inhibition of bovine liver lysine-ketoglutarate reductase by urea cycle metabolites and saccharopine. Biochem Int. 1987 Apr;14(4):589–595. [PubMed] [Google Scholar]
  2. Arruda P., Sodek L., da Silva W. J. Lysine-ketoglutarate reductase activity in developing maize endosperm. Plant Physiol. 1982 Apr;69(4):988–989. doi: 10.1104/pp.69.4.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bledsoe R. K., Dawson P. A., Hutson S. M. Cloning of the rat and human mitochondrial branched chain aminotransferases (BCATm). Biochim Biophys Acta. 1997 Apr 25;1339(1):9–13. doi: 10.1016/s0167-4838(97)00044-7. [DOI] [PubMed] [Google Scholar]
  4. Blemings K. P., Crenshaw T. D., Benevenga N. J. Mitochondrial lysine uptake limits hepatic lysine oxidation in rats fed diets containing 5, 20 or 60% casein. J Nutr. 1998 Dec;128(12):2427–2434. doi: 10.1093/jn/128.12.2427. [DOI] [PubMed] [Google Scholar]
  5. Blemings K. P., Crenshaw T. D., Swick R. W., Benevenga N. J. Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr. 1994 Aug;124(8):1215–1221. doi: 10.1093/jn/124.8.1215. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Brochetto-Braga M. R., Leite A., Arruda P. Partial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperms. Plant Physiol. 1992 Mar;98(3):1139–1147. doi: 10.1104/pp.98.3.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cederbaum S. D., Shaw K. N., Dancis J., Hutzler J., Blaskovics J. C. Hyperlysinemia with saccharopinuria due to combined lysine-ketoglutarate reductase and saccharopine dehydrogenase deficiencies presenting as cystinuria. J Pediatr. 1979 Aug;95(2):234–238. doi: 10.1016/s0022-3476(79)80657-5. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Chu S. H., Hegsted D. M. Adaptive response of lysine and threonine degrading enzymes in adult rats. J Nutr. 1976 Aug;106(8):1089–1096. doi: 10.1093/jn/106.8.1089. [DOI] [PubMed] [Google Scholar]
  11. Claros M. G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996 Nov 1;241(3):779–786. doi: 10.1111/j.1432-1033.1996.00779.x. [DOI] [PubMed] [Google Scholar]
  12. Dancis J., Hutzler J., Cox R. P. Familial hyperlysinemia: enzyme studies, diagnostic methods, comments on terminology. Am J Hum Genet. 1979 May;31(3):290–299. [PMC free article] [PubMed] [Google Scholar]
  13. Dancis J., Hutzler J., Woody N. C., Cox R. P. Multiple enzyme defects in familial hyperlysinemia. Pediatr Res. 1976 Jul;10(7):686–691. doi: 10.1203/00006450-197607000-00011. [DOI] [PubMed] [Google Scholar]
  14. Epelbaum S., McDevitt R., Falco S. C. Lysine-ketoglutarate reductase and saccharopine dehydrogenase from Arabidopsis thaliana: nucleotide sequence and characterization. Plant Mol Biol. 1997 Dec;35(6):735–748. doi: 10.1023/a:1005808923191. [DOI] [PubMed] [Google Scholar]
  15. Feller A., Dubois E., Ramos F., Piérard A. Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol Cell Biol. 1994 Oct;14(10):6411–6418. doi: 10.1128/mcb.14.10.6411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fellows F. C., Lewis M. H. Lysine metabolism in mammals. Biochem J. 1973 Oct;136(2):329–334. doi: 10.1042/bj1360329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fjellstedt T. A., Robinson J. C. Properties of partially purified saccharopine dehydrogenase from human placenta. Arch Biochem Biophys. 1975 Nov;171(1):191–196. doi: 10.1016/0003-9861(75)90023-5. [DOI] [PubMed] [Google Scholar]
  18. Fjellstedt T. A., Robinson J. C. Purification and properties of L-lysine-alpha-ketoglutarate reductase from human placenta. Arch Biochem Biophys. 1975 Jun;168(2):536–548. doi: 10.1016/0003-9861(75)90285-4. [DOI] [PubMed] [Google Scholar]
  19. Goncalves-Butruille M., Szajner P., Torigoi E., Leite A., Arruda P. Purification and Characterization of the Bifunctional Enzyme Lysine-Ketoglutarate Reductase-Saccharopine Dehydrogenase from Maize. Plant Physiol. 1996 Mar;110(3):765–771. doi: 10.1104/pp.110.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Higashino K., Fujioka M., Yamamura Y. The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse. Arch Biochem Biophys. 1971 Feb;142(2):606–614. doi: 10.1016/0003-9861(71)90525-x. [DOI] [PubMed] [Google Scholar]
  21. Higashino K., Tsukada K., Lieberman I. Saccharopine, a product of lysine breakdown by mammalian liver. Biochem Biophys Res Commun. 1965 Jul 26;20(3):285–290. doi: 10.1016/0006-291x(65)90361-x. [DOI] [PubMed] [Google Scholar]
  22. Hutzler J., Dancis J. Conversion of lysine to saccharopine by human tissues. Biochim Biophys Acta. 1968 Apr 16;158(1):62–69. doi: 10.1016/0304-4165(68)90072-x. [DOI] [PubMed] [Google Scholar]
  23. Hutzler J., Dancis J. Lysine-ketoglutarate reductase in human tissues. Biochim Biophys Acta. 1975 Jan 23;377(1):42–51. doi: 10.1016/0005-2744(75)90284-3. [DOI] [PubMed] [Google Scholar]
  24. JONES E. E., BROQUIST H. P. SACCHAROPINE, AN INTERMEDIATE OF THE AMINOADIPIC ACID PATHWAY OF LYSINE BIOSYNTHESIS. II. STUDIES IN SACCHAROMYCES CEREVISEAE. J Biol Chem. 1965 Jun;240:2531–2536. [PubMed] [Google Scholar]
  25. Karchi H., Miron D., Ben-Yaacov S., Galili G. The lysine-dependent stimulation of lysine catabolism in tobacco seed requires calcium and protein phosphorylation. Plant Cell. 1995 Nov;7(11):1963–1970. doi: 10.1105/tpc.7.11.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Karchi H., Shaul O., Galili G. Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2577–2581. doi: 10.1073/pnas.91.7.2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markovitz P. J., Chuang D. T., Cox R. P. Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J Biol Chem. 1984 Oct 10;259(19):11643–11646. [PubMed] [Google Scholar]
  28. Markovitz P. J., Chuang D. T. The bifunctional aminoadipic semialdehyde synthase in lysine degradation. Separation of reductase and dehydrogenase domains by limited proteolysis and column chromatography. J Biol Chem. 1987 Jul 5;262(19):9353–9358. [PubMed] [Google Scholar]
  29. McGeoch D. J. On the predictive recognition of signal peptide sequences. Virus Res. 1985 Oct;3(3):271–286. doi: 10.1016/0168-1702(85)90051-6. [DOI] [PubMed] [Google Scholar]
  30. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noda C., Ichihara A. Control of ketogenesis from amino acids. IV. Tissue specificity in oxidation of leucine, tyrosine, and lysine. J Biochem. 1976 Nov;80(5):1159–1164. doi: 10.1093/oxfordjournals.jbchem.a131371. [DOI] [PubMed] [Google Scholar]
  32. Noda C., Ichihara A. Purification and properties of L-lysine-alpha-ketoglutarate reductase from rat liver mitochondria. Biochim Biophys Acta. 1978 Aug 7;525(2):307–313. doi: 10.1016/0005-2744(78)90225-5. [DOI] [PubMed] [Google Scholar]
  33. Ramos F., Dubois E., Piérard A. Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14. Eur J Biochem. 1988 Jan 15;171(1-2):171–176. doi: 10.1111/j.1432-1033.1988.tb13773.x. [DOI] [PubMed] [Google Scholar]
  34. Rao V. V., Pan X., Chang Y. F. Developmental changes of L-lysine-ketoglutarate reductase in rat brain and liver. Comp Biochem Physiol B. 1992 Sep;103(1):221–224. doi: 10.1016/0305-0491(92)90435-t. [DOI] [PubMed] [Google Scholar]
  35. Scislowski P. W., Foster A. R., Fuller M. F. Regulation of oxidative degradation of L-lysine in rat liver mitochondria. Biochem J. 1994 Jun 15;300(Pt 3):887–891. doi: 10.1042/bj3000887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shinno H., Noda C., Tanaka K., Ichihara A. Induction of L-lysine-2-oxoglutarate reductase by glucagon and glucocorticoid in developing and adult rats: in vivo and in vitro studies. Biochim Biophys Acta. 1980 Dec 15;633(3):310–316. doi: 10.1016/0304-4165(80)90190-7. [DOI] [PubMed] [Google Scholar]
  37. Tang G., Miron D., Zhu-Shimoni J. X., Galili G. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis. Plant Cell. 1997 Aug;9(8):1305–1316. doi: 10.1105/tpc.9.8.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Torres N., López G., De Santiago S., Hutson S. M., Tovar A. R. Dietary protein level regulates expression of the mitochondrial branched-chain aminotransferase in rats. J Nutr. 1998 Aug;128(8):1368–1375. doi: 10.1093/jn/128.8.1368. [DOI] [PubMed] [Google Scholar]
  40. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES