Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):571–576.

Molecular characterization of Plasmodium falciparum S-adenosylmethionine synthetase.

P K Chiang 1, M E Chamberlin 1, D Nicholson 1, S Soubes 1, X Su 1, G Subramanian 1, D E Lanar 1, S T Prigge 1, J P Scovill 1, L H Miller 1, J Y Chou 1
PMCID: PMC1220677  PMID: 10567242

Abstract

S-Adenosylmethionine (AdoMet) synthetase (SAMS: EC 2.5.1.6) catalyses the formation of AdoMet from methionine and ATP. We have cloned a gene for Plasmodium falciparum AdoMet synthetase (PfSAMS) (GenBank accession no. AF097923), consisting of 1209 base pairs with no introns. The gene encodes a polypeptide (PfSAMS) of 402 amino acids with a molecular mass of 44844 Da, and has an overall base composition of 67% A+T. PfSAMS is probably a single copy gene, and was mapped to chromosome 9. The PfSAMS protein is highly homologous to all other SAMS, including a conserved motif for the phosphate-binding P-loop, HGGGAFSGKD, and the signature hexapeptide, GAGDQG. All the active-site amino acids for the binding of ADP, P(i) and metal ions are similarly preserved, matching entirely those of human hepatic SAMS and Escherichia coli SAMS. Molecular modelling of PfSAMS guided by the X-ray crystal structure of E. coli SAMS indicates that PfSAMS binds ATP/Mg(2+) in a manner similar to that seen in the E. coli SAMS structure. However, the PfSAMS model shows that it can not form tetramers as does E. coli SAMS, and is probably a dimer instead. There was a differential sensitivity towards the inhibition by cycloleucine between the expressed PfSAMS and the human hepatic SAMS with K(i) values of 17 and 10 mM, respectively. Based on phylogenetic analysis using protein parsimony and neighbour-joining algorithms, the malarial PfSAMS is closely related to SAMS of other protozoans and plants.

Full Text

The Full Text of this article is available as a PDF (266.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn K. S., Henney H. R., Jr Nucleotide sequence and developmental expression of Acanthamoeba S-adenosylmethionine synthetase gene. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):223–230. doi: 10.1016/s0167-4781(96)00201-1. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender C. M., Zingg J. M., Jones P. A. DNA methylation as a target for drug design. Pharm Res. 1998 Feb;15(2):175–187. doi: 10.1023/a:1011946030404. [DOI] [PubMed] [Google Scholar]
  4. Bitonti A. J., Baumann R. J., Jarvi E. T., McCarthy J. R., McCann P. P. Antimalarial activity of a 4',5'-unsaturated 5'-fluoroadenosine mechanism-based inhibitor of S-adenosyl-L-homocysteine hydrolase. Biochem Pharmacol. 1990 Aug 1;40(3):601–606. doi: 10.1016/0006-2952(90)90562-y. [DOI] [PubMed] [Google Scholar]
  5. CATONI G. L. S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem. 1953 Sep;204(1):403–416. [PubMed] [Google Scholar]
  6. Chamberlin M. E., Ubagai T., Mudd S. H., Wilson W. G., Leonard J. V., Chou J. Y. Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest. 1996 Aug 15;98(4):1021–1027. doi: 10.1172/JCI118862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chiang P. K. Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol Ther. 1998 Feb;77(2):115–134. doi: 10.1016/s0163-7258(97)00089-2. [DOI] [PubMed] [Google Scholar]
  8. Chiang P. K., Cantoni G. L. Activation of methionine for transmethylation. Purification of the S-adenosylmethionine synthetase of bakers' yeast and its separation into two forms. J Biol Chem. 1977 Jul 10;252(13):4506–4513. [PubMed] [Google Scholar]
  9. Chiang P. K., Gordon R. K., Tal J., Zeng G. C., Doctor B. P., Pardhasaradhi K., McCann P. P. S-Adenosylmethionine and methylation. FASEB J. 1996 Mar;10(4):471–480. [PubMed] [Google Scholar]
  10. Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 1996;266:418–427. doi: 10.1016/s0076-6879(96)66026-1. [DOI] [PubMed] [Google Scholar]
  11. Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. [DOI] [PubMed] [Google Scholar]
  12. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  13. Gardner M. J., Tettelin H., Carucci D. J., Cummings L. M., Aravind L., Koonin E. V., Shallom S., Mason T., Yu K., Fujii C. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science. 1998 Nov 6;282(5391):1126–1132. doi: 10.1126/science.282.5391.1126. [DOI] [PubMed] [Google Scholar]
  14. Hoffman J. L. Bioactivation by S-adenosylation, S-methylation, or N-methylation. Adv Pharmacol. 1994;27:449–477. [PubMed] [Google Scholar]
  15. Horikawa S., Sasuga J., Shimizu K., Ozasa H., Tsukada K. Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase. J Biol Chem. 1990 Aug 15;265(23):13683–13686. [PubMed] [Google Scholar]
  16. Kotb M., Geller A. M. Methionine adenosyltransferase: structure and function. Pharmacol Ther. 1993 Aug;59(2):125–143. doi: 10.1016/0163-7258(93)90042-c. [DOI] [PubMed] [Google Scholar]
  17. Kotb M., Mudd S. H., Mato J. M., Geller A. M., Kredich N. M., Chou J. Y., Cantoni G. L. Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet. 1997 Feb;13(2):51–52. doi: 10.1016/s0168-9525(97)01013-5. [DOI] [PubMed] [Google Scholar]
  18. Larsson J., Rasmuson-Lestander A. Molecular cloning of the S-adenosylmethionine synthetase gene in Drosophila melanogaster. FEBS Lett. 1994 Apr 11;342(3):329–333. doi: 10.1016/0014-5793(94)80526-1. [DOI] [PubMed] [Google Scholar]
  19. Lee J. H., Chae H. S., Lee J. H., Hwang B., Hahn K. W., Kang B. G., Kim W. T. Structure and expression of two cDNAs encoding S-adenosyl-L-methionine synthetase of rice (Oryza sativa L.). Biochim Biophys Acta. 1997 Oct 9;1354(1):13–18. doi: 10.1016/s0167-4781(97)00114-0. [DOI] [PubMed] [Google Scholar]
  20. Lombardini J. B., Talalay P. Effect of inhibitors of adenosine triphosphate: L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine and L-methionine in normal and malignant mammalian tissues. Mol Pharmacol. 1973 Jul;9(4):542–560. [PubMed] [Google Scholar]
  21. Markham G. D., DeParasis J., Gatmaitan J. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J Biol Chem. 1984 Dec 10;259(23):14505–14507. [PubMed] [Google Scholar]
  22. Markham G. D., Hafner E. W., Tabor C. W., Tabor H. S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem. 1980 Oct 10;255(19):9082–9092. [PubMed] [Google Scholar]
  23. Mayers D. L., Mikovits J. A., Joshi B., Hewlett I. K., Estrada J. S., Wolfe A. D., Garcia G. E., Doctor B. P., Burke D. S., Gordon R. K. Anti-human immunodeficiency virus 1 (HIV-1) activities of 3-deazaadenosine analogs: increased potency against 3'-azido-3'-deoxythymidine-resistant HIV-1 strains. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):215–219. doi: 10.1073/pnas.92.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller L. H., Smith J. D. Motherhood and malaria. Nat Med. 1998 Nov;4(11):1244–1245. doi: 10.1038/3223. [DOI] [PubMed] [Google Scholar]
  25. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  26. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  27. Satishchandran C., Taylor J. C., Markham G. D. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Mol Microbiol. 1993 Aug;9(4):835–846. doi: 10.1111/j.1365-2958.1993.tb01742.x. [DOI] [PubMed] [Google Scholar]
  28. Schröder G., Eichel J., Breinig S., Schröder J. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization. Plant Mol Biol. 1997 Jan;33(2):211–222. doi: 10.1023/a:1005711720930. [DOI] [PubMed] [Google Scholar]
  29. Su X. Z., Wellems T. E. Plasmodium falciparum: assignment of microsatellite markers to chromosomes by PFG-PCR. Exp Parasitol. 1999 Apr;91(4):367–369. doi: 10.1006/expr.1998.4390. [DOI] [PubMed] [Google Scholar]
  30. Su X. Z., Wu Y., Sifri C. D., Wellems T. E. Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res. 1996 Apr 15;24(8):1574–1575. doi: 10.1093/nar/24.8.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sufrin J. R., Coulter A. W., Talalay P. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-L-methionine. IV. Further mono-, bi- and tricyclic amino acids. Mol Pharmacol. 1979 May;15(3):661–677. [PubMed] [Google Scholar]
  32. Szyf M. The DNA methylation machinery as a target for anticancer therapy. Pharmacol Ther. 1996;70(1):1–37. doi: 10.1016/0163-7258(96)00002-2. [DOI] [PubMed] [Google Scholar]
  33. Tabor C. W., Tabor H. Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Adv Enzymol Relat Areas Mol Biol. 1984;56:251–282. doi: 10.1002/9780470123027.ch4. [DOI] [PubMed] [Google Scholar]
  34. Takusagawa F., Kamitori S., Markham G. D. Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry. 1996 Feb 27;35(8):2586–2596. doi: 10.1021/bi952604z. [DOI] [PubMed] [Google Scholar]
  35. Thomas D., Surdin-Kerjan Y. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1997 Dec;61(4):503–532. doi: 10.1128/mmbr.61.4.503-532.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tobeña R., Horikawa S., Calvo V., Alemany S. Interleukin-2 induces gamma-S-adenosyl-L-methionine synthetase gene expression during T-lymphocyte activation. Biochem J. 1996 Nov 1;319(Pt 3):929–933. doi: 10.1042/bj3190929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Trager W., Tershakovec M., Chiang P. K., Cantoni G. L. Plasmodium falciparum: antimalarial activity in culture of sinefungin and other methylation inhibitors. Exp Parasitol. 1980 Aug;50(1):83–89. doi: 10.1016/0014-4894(80)90010-7. [DOI] [PubMed] [Google Scholar]
  39. Ubagai T., Lei K. J., Huang S., Mudd S. H., Levy H. L., Chou J. Y. Molecular mechanisms of an inborn error of methionine pathway. Methionine adenosyltransferase deficiency. J Clin Invest. 1995 Oct;96(4):1943–1947. doi: 10.1172/JCI118240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whaun J. M., Miura G. A., Brown N. D., Gordon R. K., Chiang P. K. Antimalarial activity of neplanocin A with perturbations in the metabolism of purines, polyamines and S-adenosylmethionine. J Pharmacol Exp Ther. 1986 Jan;236(1):277–283. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES