Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):585–592.

Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

J T Maynes 1, W Yam 1, J P Jenuth 1, R Gang Yuan 1, S A Litster 1, B M Phipps 1, F F Snyder 1
PMCID: PMC1220679  PMID: 10567244

Abstract

Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively.

Full Text

The Full Text of this article is available as a PDF (271.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold G. E., Ornstein R. L. An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme. Proteins. 1994 Jan;18(1):19–33. doi: 10.1002/prot.340180105. [DOI] [PubMed] [Google Scholar]
  2. Bohacek R. S., McMartin C., Guida W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev. 1996 Jan;16(1):3–50. doi: 10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  3. Bollinger M. E., Arredondo-Vega F. X., Santisteban I., Schwarz K., Hershfield M. S., Lederman H. M. Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency. N Engl J Med. 1996 May 23;334(21):1367–1371. doi: 10.1056/NEJM199605233342104. [DOI] [PubMed] [Google Scholar]
  4. Bordignon C., Notarangelo L. D., Nobili N., Ferrari G., Casorati G., Panina P., Mazzolari E., Maggioni D., Rossi C., Servida P. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995 Oct 20;270(5235):470–475. doi: 10.1126/science.270.5235.470. [DOI] [PubMed] [Google Scholar]
  5. Brooks S. P. A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques. 1992 Dec;13(6):906–911. [PubMed] [Google Scholar]
  6. Bzowska A., Kulikowska E., Shugar D. Linear free energy relationships for N(7)-substituted guanosines as substrates of calf spleen purine nucleoside phosphorylase. Possible role of N(7)-protonation as an intermediary in phosphorolysis. Z Naturforsch C. 1993 Sep-Oct;48(9-10):803–811. doi: 10.1515/znc-1993-9-1020. [DOI] [PubMed] [Google Scholar]
  7. Ealick S. E., Babu Y. S., Bugg C. E., Erion M. D., Guida W. C., Montgomery J. A., Secrist J. A., 3rd Application of crystallographic and modeling methods in the design of purine nucleoside phosphorylase inhibitors. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11540–11544. doi: 10.1073/pnas.88.24.11540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ealick S. E., Rule S. A., Carter D. C., Greenhough T. J., Babu Y. S., Cook W. J., Habash J., Helliwell J. R., Stoeckler J. D., Parks R. E., Jr Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 A resolution. J Biol Chem. 1990 Jan 25;265(3):1812–1820. doi: 10.2210/pdb2pnp/pdb. [DOI] [PubMed] [Google Scholar]
  9. Erion M. D., Stoeckler J. D., Guida W. C., Walter R. L., Ealick S. E. Purine nucleoside phosphorylase. 2. Catalytic mechanism. Biochemistry. 1997 Sep 30;36(39):11735–11748. doi: 10.1021/bi961970v. [DOI] [PubMed] [Google Scholar]
  10. Erion M. D., Takabayashi K., Smith H. B., Kessi J., Wagner S., Hönger S., Shames S. L., Ealick S. E. Purine nucleoside phosphorylase. 1. Structure-function studies. Biochemistry. 1997 Sep 30;36(39):11725–11734. doi: 10.1021/bi961969w. [DOI] [PubMed] [Google Scholar]
  11. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  12. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  13. Ito W., Ishiguro H., Kurosawa Y. A general method for introducing a series of mutations into cloned DNA using the polymerase chain reaction. Gene. 1991 Jun 15;102(1):67–70. doi: 10.1016/0378-1119(91)90539-n. [DOI] [PubMed] [Google Scholar]
  14. Jenuth J. P., Mangat R. K., Snyder F. F. cDNA sequence of four purine nucleoside phosphorylase (Np) alleles in the mouse. Mamm Genome. 1993;4(10):598–603. doi: 10.1007/BF00361392. [DOI] [PubMed] [Google Scholar]
  15. Jenuth J. P., Snyder F. F. Nucleotide sequence of murine purine nucleoside phosphorylase cDNA. Nucleic Acids Res. 1991 Apr 11;19(7):1708–1708. doi: 10.1093/nar/19.7.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kelley W. N., Levy R. I., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Adenine phosphoribosyltransferase deficiency: a previously undescribed genetic defect in man. J Clin Invest. 1968 Oct;47(10):2281–2289. doi: 10.1172/JCI105913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kline P. C., Schramm V. L. Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase. Biochemistry. 1995 Jan 31;34(4):1153–1162. doi: 10.1021/bi00004a008. [DOI] [PubMed] [Google Scholar]
  18. Koellner G., Luić M., Shugar D., Saenger W., Bzowska A. Crystal structure of calf spleen purine nucleoside phosphorylase in a complex with hypoxanthine at 2.15 A resolution. J Mol Biol. 1997 Jan 17;265(2):202–216. doi: 10.1006/jmbi.1996.0730. [DOI] [PubMed] [Google Scholar]
  19. Krenitsky T. A., Elion G. B., Henderson A. M., Hitchings G. H. Inhibition of human purine nucleoside phosphorylase. Studies with intact erythrocytes and the purified enzyme. J Biol Chem. 1968 Jun 10;243(11):2876–2881. [PubMed] [Google Scholar]
  20. Le Tissier P. R., Peters J., Skidmore C. J. Development of an assay method for purine catabolic enzymes in the mouse and its adaptation for use on an autoanalyzer. Anal Biochem. 1994 Oct;222(1):168–175. doi: 10.1006/abio.1994.1469. [DOI] [PubMed] [Google Scholar]
  21. Lutz R. A., Bull C., Rodbard D. Computer analysis of enzyme-substrate-inhibitor kinetic data with automatic model selection using IBM-PC compatible microcomputers. Enzyme. 1986;36(3):197–206. doi: 10.1159/000469292. [DOI] [PubMed] [Google Scholar]
  22. Mao C., Cook W. J., Zhou M., Federov A. A., Almo S. C., Ealick S. E. Calf spleen purine nucleoside phosphorylase complexed with substrates and substrate analogues. Biochemistry. 1998 May 19;37(20):7135–7146. doi: 10.1021/bi9723919. [DOI] [PubMed] [Google Scholar]
  23. Mao C., Cook W. J., Zhou M., Koszalka G. W., Krenitsky T. A., Ealick S. E. The crystal structure of Escherichia coli purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topology. Structure. 1997 Oct 15;5(10):1373–1383. doi: 10.1016/s0969-2126(97)00287-6. [DOI] [PubMed] [Google Scholar]
  24. Montgomery J. A. Structure-based drug design: inhibitors of purine nucleoside phosphorylase. Index: structure-based drug design: inhibitors of PNP. Drug Des Discov. 1994 Jun;11(4):289–305. [PubMed] [Google Scholar]
  25. Ropp P. A., Traut T. W. Purine nucleoside phosphorylase. Allosteric regulation of a dissociating enzyme. J Biol Chem. 1991 Apr 25;266(12):7682–7687. [PubMed] [Google Scholar]
  26. Snyder F. F., Jenuth J. P., Dilay J. E., Fung E., Lightfoot T., Mably E. R. Secondary loss of deoxyguanosine kinase activity in purine nucleoside phosphorylase deficient mice. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):33–40. doi: 10.1016/0925-4439(94)90103-1. [DOI] [PubMed] [Google Scholar]
  27. Snyder F. F., Jenuth J. P., Mably E. R., Mangat R. K. Point mutations at the purine nucleoside phosphorylase locus impair thymocyte differentiation in the mouse. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2522–2527. doi: 10.1073/pnas.94.6.2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stoeckler J. D., Agarwal R. P., Agarwal K. C., Schmid K., Parks R. E., Jr Purine nucleoside phosphorylase from human erythrocytes: physiocochemical properties of the crystalline enzyme. Biochemistry. 1978 Jan 24;17(2):278–283. doi: 10.1021/bi00595a014. [DOI] [PubMed] [Google Scholar]
  29. Stoeckler J. D., Poirot A. F., Smith R. M., Parks R. E., Jr, Ealick S. E., Takabayashi K., Erion M. D. Purine nucleoside phosphorylase. 3. Reversal of purine base specificity by site-directed mutagenesis. Biochemistry. 1997 Sep 30;36(39):11749–11756. doi: 10.1021/bi961971n. [DOI] [PubMed] [Google Scholar]
  30. Tabor S., Richardson C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6339–6343. doi: 10.1073/pnas.92.14.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wiginton D. A., Coleman M. S., Hutton J. J. Characterization of purine nucleoside phosphorylase from human granulocytes and its metabolism of deoxyribonucleosides. J Biol Chem. 1980 Jul 25;255(14):6663–6669. [PubMed] [Google Scholar]
  32. Williams-Ashman H. G., Seidenfeld J., Galletti P. Trends in the biochemical pharmacology of 5'-deoxy-5'-methylthioadenosine. Biochem Pharmacol. 1982 Feb 1;31(3):277–288. doi: 10.1016/0006-2952(82)90171-x. [DOI] [PubMed] [Google Scholar]
  33. Zannis V., Doyle D., Martin D. W., Jr Purification and characterization of human erythrocyte purine nucleoside phosphorylase and its subunits. J Biol Chem. 1978 Jan 25;253(2):504–510. [PubMed] [Google Scholar]
  34. Zimmerman T. P., Gersten N. B., Ross A. F., Miech R. P. Adenine as substrate for purine nucleoside phosphorylase. Can J Biochem. 1971 Sep;49(9):1050–1054. doi: 10.1139/o71-153. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES