Abstract
Although neither the physiological function nor the mechanism of action of sterol carrier protein 2 (SCP(2)) is yet completely clear, it is thought that SCP(2) interacts with membranes to elicit its biological effects. The results presented here show that the SCP(2) N-terminus, composed of two amphipathic alpha-helices, interacted preferentially with highly curved but not lower-curvature membranes containing anionic phospholipid. CD spectra of SCP(2) showed up to 1. 2-fold increased alpha-helical content, on the interaction of SCP(2) with small unilamellar vesicles (SUV) (median radius 10-14 nm) but less with large unilamellar vesicles (LUV) (median radius 52-60 nm). Although enhanced interaction with the SUV membranes was due in part to the radius of curvature and to the greater exposure of acidic phospholipid in the outer leaflet of the bilayer, simply increasing the molar percentage of acidic phospholipid in the LUV membranes had much less effect on SCP(2) binding. A similar preferential interaction was observed with highly curved SUV as opposed to LUV for the SCP(2) N-terminal peptide (1-32)SCP(2) as well as structurally modified peptides in the order (1-32)SCP(2)=(10-32)SCP(2)>(1-24)SCP(2)>>(1-E20-32)SCP(2). The CD results were confirmed with an independent filtration binding assay, which showed that SCP(2) bound 5-fold more to SUV than LUV, whereas its N-terminal peptides bound up to 4-fold better in the order (1-32)SCP(2)=(10-32)SCP(2)>(1-24)SCP(2)>(1-E20-32)SCP(2). Finally, cholesterol potentiated the binding of SCP(2) and N-terminal peptides to anionic-phospholipid-containing SUV but not LUV. These findings were consistent with the SCP(2) N-terminus being a membrane-binding domain that was highly dependent on membrane surface curvature as well as on lipid composition.
Full Text
The Full Text of this article is available as a PDF (200.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott A. J., Nelsestuen G. L. Association of a protein with membrane vesicles at the collisional limit: studies with blood coagulation factor Va light chain also suggest major differences between small and large unilamellar vesicles. Biochemistry. 1987 Dec 1;26(24):7994–8003. doi: 10.1021/bi00398a067. [DOI] [PubMed] [Google Scholar]
- Atshaves B. P., Petrescu A. D., Starodub O., Roths J. B., Kier A. B., Schroeder F. Expression and intracellular processing of the 58 kDa sterol carrier protein-2/3-oxoacyl-CoA thiolase in transfected mouse L-cell fibroblasts. J Lipid Res. 1999 Apr;40(4):610–622. [PubMed] [Google Scholar]
- Avdulov N. A., Chochina S. V., Igbavboa U., Warden C. S., Schroeder F., Wood W. G. Lipid binding to sterol carrier protein-2 is inhibited by ethanol. Biochim Biophys Acta. 1999 Jan 29;1437(1):37–45. doi: 10.1016/s0005-2760(98)00178-7. [DOI] [PubMed] [Google Scholar]
- Berden J. A., Barker R. W., Radda G. K. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution. Biochim Biophys Acta. 1975 Jan 28;375(2):186–208. doi: 10.1016/0005-2736(75)90188-1. [DOI] [PubMed] [Google Scholar]
- Billheimer J. T., Gaylor J. L. Effect of lipid composition on the transfer of sterols mediated by non-specific lipid transfer protein (sterol carrier protein2). Biochim Biophys Acta. 1990 Sep 18;1046(2):136–143. doi: 10.1016/0005-2760(90)90180-6. [DOI] [PubMed] [Google Scholar]
- Boffelli D., Weber F. E., Compassi S., Werder M., Schulthess G., Hauser H. Reconstitution and further characterization of the cholesterol transport activity of the small-intestinal brush border membrane. Biochemistry. 1997 Sep 2;36(35):10784–10792. doi: 10.1021/bi970625i. [DOI] [PubMed] [Google Scholar]
- Brumm T., Jørgensen K., Mouritsen O. G., Bayerl T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/ distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys J. 1996 Mar;70(3):1373–1379. doi: 10.1016/S0006-3495(96)79695-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanderbhan R., Noland B. J., Scallen T. J., Vahouny G. V. Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem. 1982 Aug 10;257(15):8928–8934. [PubMed] [Google Scholar]
- Colles S. M., Woodford J. K., Moncecchi D., Myers-Payne S. C., McLean L. R., Billheimer J. T., Schroeder F. Cholesterol interaction with recombinant human sterol carrier protein-2. Lipids. 1995 Sep;30(9):795–803. doi: 10.1007/BF02533954. [DOI] [PubMed] [Google Scholar]
- Fielding C. J., Fielding P. E. Intracellular cholesterol transport. J Lipid Res. 1997 Aug;38(8):1503–1521. [PubMed] [Google Scholar]
- Frolov A., Cho T. H., Billheimer J. T., Schroeder F. Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein. J Biol Chem. 1996 Dec 13;271(50):31878–31884. doi: 10.1074/jbc.271.50.31878. [DOI] [PubMed] [Google Scholar]
- Frolov A., Miller K., Billheimer J. T., Cho T. H., Schroeder F. Lipid specificity and location of the sterol carrier protein-2 fatty acid-binding site: a fluorescence displacement and energy transfer study. Lipids. 1997 Nov;32(11):1201–1209. doi: 10.1007/s11745-997-0154-5. [DOI] [PubMed] [Google Scholar]
- Frolov A., Schroeder F. Acyl coenzyme A binding protein. Conformational sensitivity to long chain fatty acyl-CoA. J Biol Chem. 1998 May 1;273(18):11049–11055. doi: 10.1074/jbc.273.18.11049. [DOI] [PubMed] [Google Scholar]
- Gadella T. W., Jr, Bastiaens P. I., Visser A. J., Wirtz K. W. Shape and lipid-binding site of the nonspecific lipid-transfer protein (sterol carrier protein 2): a steady-state and time-resolved fluorescence study. Biochemistry. 1991 Jun 4;30(22):5555–5564. doi: 10.1021/bi00236a031. [DOI] [PubMed] [Google Scholar]
- Gadella T. W., Jr, Wirtz K. W. Phospholipid binding and transfer by the nonspecific lipid-transfer protein (sterol carrier protein 2). A kinetic model. Eur J Biochem. 1994 Mar 15;220(3):1019–1028. doi: 10.1111/j.1432-1033.1994.tb18707.x. [DOI] [PubMed] [Google Scholar]
- Gadella T. W., Jr, Wirtz K. W. The low-affinity lipid binding site of the non-specific lipid transfer protein. Implications for its mode of action. Biochim Biophys Acta. 1991 Nov 18;1070(1):237–245. doi: 10.1016/0005-2736(91)90170-d. [DOI] [PubMed] [Google Scholar]
- Greenhut S. F., Bourgeois V. R., Roseman M. A. Distribution of cytochrome b5 between small and large unilamellar phospholipid vesicles. J Biol Chem. 1986 Mar 15;261(8):3670–3675. [PubMed] [Google Scholar]
- Hapala I., Butko P., Schroeder F. Role of acidic phospholipids in intermembrane sterol transfer. Chem Phys Lipids. 1990 Nov;56(1):37–47. doi: 10.1016/0009-3084(90)90086-7. [DOI] [PubMed] [Google Scholar]
- Hapala I., Kavecansky J., Butko P., Scallen T. J., Joiner C. H., Schroeder F. Regulation of membrane cholesterol domains by sterol carrier protein-2. Biochemistry. 1994 Jun 21;33(24):7682–7690. doi: 10.1021/bi00190a023. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Rao N. M., Hui S. W., Cornell R. B. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry. 1998 Jun 30;37(26):9509–9519. doi: 10.1021/bi980340l. [DOI] [PubMed] [Google Scholar]
- Kavecansky J., Schroeder F., Joiner C. H. Deoxygenation-induced alterations in sickle cell membrane cholesterol exchange. Am J Physiol. 1995 Nov;269(5 Pt 1):C1105–C1111. doi: 10.1152/ajpcell.1995.269.5.C1105. [DOI] [PubMed] [Google Scholar]
- Lipka G., Schulthess G., Thurnhofer H., Wacker H., Wehrli E., Zeman K., Weber F. E., Hauser H. Characterization of lipid exchange proteins isolated from small intestinal brush border membrane. J Biol Chem. 1995 Mar 17;270(11):5917–5925. doi: 10.1074/jbc.270.11.5917. [DOI] [PubMed] [Google Scholar]
- Litman B. J. Lipid model membranes. Characterization of mixed phospholipid vesicles. Biochemistry. 1973 Jun 19;12(13):2545–2554. doi: 10.1021/bi00737a028. [DOI] [PubMed] [Google Scholar]
- Machida K., Ohnishi S. I. Effect of bilayer membrane curvature on activity of phosphatidylcholine exchange protein. Biochim Biophys Acta. 1980 Feb 28;596(2):201–209. doi: 10.1016/0005-2736(80)90355-7. [DOI] [PubMed] [Google Scholar]
- Matsuura J. E., George H. J., Ramachandran N., Alvarez J. G., Strauss J. F., 3rd, Billheimer J. T. Expression of the mature and the pro-form of human sterol carrier protein 2 in Escherichia coli alters bacterial lipids. Biochemistry. 1993 Jan 19;32(2):567–572. doi: 10.1021/bi00053a023. [DOI] [PubMed] [Google Scholar]
- Murphy E. J., Schroeder F. Sterol carrier protein-2 mediated cholesterol esterification in transfected L-cell fibroblasts. Biochim Biophys Acta. 1997 Apr 21;1345(3):283–292. doi: 10.1016/s0005-2760(97)00003-9. [DOI] [PubMed] [Google Scholar]
- Nichols J. W. Kinetics of fluorescent-labeled phosphatidylcholine transfer between nonspecific lipid transfer protein and phospholipid vesicles. Biochemistry. 1988 Mar 22;27(6):1889–1896. doi: 10.1021/bi00406a014. [DOI] [PubMed] [Google Scholar]
- Pastuszyn A., Noland B. J., Bazan J. F., Fletterick R. J., Scallen T. J. Primary sequence and structural analysis of sterol carrier protein 2 from rat liver: homology with immunoglobulins. J Biol Chem. 1987 Sep 25;262(27):13219–13227. [PubMed] [Google Scholar]
- Pearse B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1255–1259. doi: 10.1073/pnas.73.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puglielli L., Rigotti A., Greco A. V., Santos M. J., Nervi F. Sterol carrier protein-2 is involved in cholesterol transfer from the endoplasmic reticulum to the plasma membrane in human fibroblasts. J Biol Chem. 1995 Aug 11;270(32):18723–18726. doi: 10.1074/jbc.270.32.18723. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Barenholz Y., Gratton E., Thompson T. E. A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry. 1987 May 5;26(9):2441–2448. doi: 10.1021/bi00383a007. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Frolov A. A., Murphy E. J., Atshaves B. P., Jefferson J. R., Pu L., Wood W. G., Foxworth W. B., Kier A. B. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med. 1996 Nov;213(2):150–177. doi: 10.3181/00379727-213-44047. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Jefferson J. R., Kier A. B., Knittel J., Scallen T. J., Wood W. G., Hapala I. Membrane cholesterol dynamics: cholesterol domains and kinetic pools. Proc Soc Exp Biol Med. 1991 Mar;196(3):235–252. doi: 10.3181/00379727-196-43185. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Myers-Payne S. C., Billheimer J. T., Wood W. G. Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol. Biochemistry. 1995 Sep 19;34(37):11919–11927. doi: 10.1021/bi00037a033. [DOI] [PubMed] [Google Scholar]
- Seedorf U., Raabe M., Ellinghaus P., Kannenberg F., Fobker M., Engel T., Denis S., Wouters F., Wirtz K. W., Wanders R. J. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev. 1998 Apr 15;12(8):1189–1201. doi: 10.1101/gad.12.8.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seedorf U., Scheek S., Engel T., Steif C., Hinz H. J., Assmann G. Structure-activity studies of human sterol carrier protein 2. J Biol Chem. 1994 Jan 28;269(4):2613–2618. [PubMed] [Google Scholar]
- Severs N. J., Robenek H. Detection of microdomains in biomembranes. An appraisal of recent developments in freeze-fracture cytochemistry. Biochim Biophys Acta. 1983 Aug 11;737(3-4):373–408. doi: 10.1016/0304-4157(83)90007-2. [DOI] [PubMed] [Google Scholar]
- Stolowich N. J., Frolov A., Atshaves B., Murphy E. J., Jolly C. A., Billheimer J. T., Scott A. I., Schroeder F. The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination. Biochemistry. 1997 Feb 18;36(7):1719–1729. doi: 10.1021/bi962317a. [DOI] [PubMed] [Google Scholar]
- Subirade M., Salesse C., Marion D., Pézolet M. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophys J. 1995 Sep;69(3):974–988. doi: 10.1016/S0006-3495(95)79971-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szyperski T., Scheek S., Johansson J., Assmann G., Seedorf U., Wüthrich K. NMR determination of the secondary structure and the three-dimensional polypeptide backbone fold of the human sterol carrier protein 2. FEBS Lett. 1993 Nov 29;335(1):18–26. doi: 10.1016/0014-5793(93)80431-s. [DOI] [PubMed] [Google Scholar]
- Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
- Talbot W. A., Zheng L. X., Lentz B. R. Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion. Biochemistry. 1997 May 13;36(19):5827–5836. doi: 10.1021/bi962437i. [DOI] [PubMed] [Google Scholar]
- Taylor K. M., Roseman M. A. Effect of cholesterol, fatty acyl chain composition, and bilayer curvature on the interaction of cytochrome b5 with liposomes of phosphatidylcholines. Biochemistry. 1995 Mar 21;34(11):3841–3850. doi: 10.1021/bi00011a042. [DOI] [PubMed] [Google Scholar]
- Vaccaro A. M., Tatti M., Ciaffoni F., Salvioli R., Barca A., Roncaioli P. Studies on glucosylceramidase binding to phosphatidylserine liposomes: the role of bilayer curvature. Biochim Biophys Acta. 1993 Jun 18;1149(1):55–62. doi: 10.1016/0005-2736(93)90024-t. [DOI] [PubMed] [Google Scholar]
- Vahouny G. V., Chanderbhan R., Kharroubi A., Noland B. J., Pastuszyn A., Scallen T. J. Sterol carrier and lipid transfer proteins. Adv Lipid Res. 1987;22:83–113. doi: 10.1016/b978-0-12-024922-0.50007-2. [DOI] [PubMed] [Google Scholar]
- Wilschut J. C., Regts J., Westenberg H., Scherphof G. Action of phospholipases A2 on phosphatidylcholine bilayers. Effects of the phase transition, bilayer curvature and structural defects. Biochim Biophys Acta. 1978 Apr 4;508(2):185–196. doi: 10.1016/0005-2736(78)90324-3. [DOI] [PubMed] [Google Scholar]
- Wirtz K. W. Phospholipid transfer proteins revisited. Biochem J. 1997 Jun 1;324(Pt 2):353–360. doi: 10.1042/bj3240353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodford J. K., Colles S. M., Myers-Payne S., Billheimer J. T., Schroeder F. Sterol carrier protein-2 stimulates intermembrane sterol transfer by direct membrane interaction. Chem Phys Lipids. 1995 May 22;76(1):73–84. doi: 10.1016/0009-3084(95)02436-m. [DOI] [PubMed] [Google Scholar]
- Wouters F. S., Markman M., de Graaf P., Hauser H., Tabak H. F., Wirtz K. W., Moorman A. F. The immunohistochemical localization of the non-specific lipid transfer protein (sterol carrier protein-2) in rat small intestine enterocytes. Biochim Biophys Acta. 1995 Nov 16;1259(2):192–196. doi: 10.1016/0005-2760(95)00163-7. [DOI] [PubMed] [Google Scholar]
- van Amerongen A., Demel R. A., Westerman J., Wirtz K. W. Transfer of cholesterol and oxysterol derivatives by the nonspecific lipid transfer protein (sterol carrier protein 2): a study on its mode of action. Biochim Biophys Acta. 1989 Jul 17;1004(1):36–43. doi: 10.1016/0005-2760(89)90209-9. [DOI] [PubMed] [Google Scholar]
