Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):625–631.

Neuropathy target esterase.

P Glynn 1
PMCID: PMC1220683  PMID: 10585848

Abstract

Neuropathy target esterase (NTE) is an integral membrane protein present in all neurons and in some non-neural-cell types of vertebrates. Recent data indicate that NTE is involved in a cell-signalling pathway controlling interactions between neurons and accessory glial cells in the developing nervous system. NTE has serine esterase activity and efficiently catalyses the hydrolysis of phenyl valerate (PV) in vitro, but its physiological substrate is unknown. By sequence analysis NTE has been found to be related neither to the major serine esterase family, which includes acetylcholinesterase, nor to any other known serine hydrolases. NTE comprises at least two functional domains: an N-terminal putative regulatory domain and a C-terminal effector domain which contains the esterase activity and is, in part, conserved in proteins found in bacteria, yeast, nematodes and insects. NTE's effector domain contains three predicted transmembrane segments, and the active-site serine residue lies at the centre of one of these segments. The isolated recombinant domain shows PV hydrolase activity only when incorporated into phospholipid liposomes. NTE's esterase activity appears to be largely redundant in adult vertebrates, but organophosphates which react with NTE in vivo initiate unknown events which lead, after a delay of 1-3 weeks, to a neuropathy with degeneration of long axons. These neuropathic organophosphates leave a negatively charged group covalently attached to the active-site serine residue, and it is suggested that this may cause a toxic gain of function in NTE.

Full Text

The Full Text of this article is available as a PDF (185.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appleyard M. E. Non-cholinergic functions of acetylcholinesterase. Biochem Soc Trans. 1994 Aug;22(3):749–755. doi: 10.1042/bst0220749. [DOI] [PubMed] [Google Scholar]
  3. Barthalay Y., Hipeau-Jacquotte R., de la Escalera S., Jiménez F., Piovant M. Drosophila neurotactin mediates heterophilic cell adhesion. EMBO J. 1990 Nov;9(11):3603–3609. doi: 10.1002/j.1460-2075.1990.tb07571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bösl M., Kersten H. Organization and functions of genes in the upstream region of tyrT of Escherichia coli: phenotypes of mutants with partial deletion of a new gene (tgs). J Bacteriol. 1994 Jan;176(1):221–231. doi: 10.1128/jb.176.1.221-231.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CASIDA J. E., ETO M., BARON R. L. Biological activity of a trio-cresyl phosphate metabolite. Nature. 1961 Sep 30;191:1396–1397. doi: 10.1038/1911396a0. [DOI] [PubMed] [Google Scholar]
  6. CAVANAGH J. B. The toxic effects of triortho-cresyl phosphate on the nervous system; an experimental study in hens. J Neurol Neurosurg Psychiatry. 1954 Aug;17(3):163–172. doi: 10.1136/jnnp.17.3.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrington C. D., Fluke D. J., Abou-Donia M. B. Target size of neurotoxic esterase and acetylcholinesterase as determined by radiation inactivation. Biochem J. 1985 Nov 1;231(3):789–792. doi: 10.1042/bj2310789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrington C. D. Prophylaxis and the mechanism for the initiation of organophosphorous compound-induced delayed neurotoxicity. Arch Toxicol. 1989;63(3):165–172. doi: 10.1007/BF00316365. [DOI] [PubMed] [Google Scholar]
  9. Clothier B., Johnson M. K. Rapid aging of neurotoxic esterase after inhibition by di-isopropyl phosphorofluoridate. Biochem J. 1979 Feb 1;177(2):549–558. doi: 10.1042/bj1770549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crabtree G. R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999 Mar 5;96(5):611–614. doi: 10.1016/s0092-8674(00)80571-1. [DOI] [PubMed] [Google Scholar]
  11. Davis C. S., Richardson R. J. Neurotoxic esterase: characterization of the solubilized enzyme and the conditions for its solubilization from chicken brain microsomal membranes with ionic, zwitterionic, or nonionic detergents. Biochem Pharmacol. 1987 May 1;36(9):1393–1399. doi: 10.1016/0006-2952(87)90104-3. [DOI] [PubMed] [Google Scholar]
  12. Derewenda Z. S., Sharp A. M. News from the interface: the molecular structures of triacylglyceride lipases. Trends Biochem Sci. 1993 Jan;18(1):20–25. doi: 10.1016/0968-0004(93)90082-x. [DOI] [PubMed] [Google Scholar]
  13. Glynn P., Holton J. L., Nolan C. C., Read D. J., Brown L., Hubbard A., Cavanagh J. B. Neuropathy target esterase: immunolocalization to neuronal cell bodies and axons. Neuroscience. 1998 Mar;83(1):295–302. doi: 10.1016/s0306-4522(97)00388-6. [DOI] [PubMed] [Google Scholar]
  14. Glynn P., Read D. J., Guo R., Wylie S., Johnson M. K. Synthesis and characterization of a biotinylated organophosphorus ester for detection and affinity purification of a brain serine esterase: neuropathy target esterase. Biochem J. 1994 Jul 15;301(Pt 2):551–556. doi: 10.1042/bj3010551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hortsch M., Patel N. H., Bieber A. J., Traquina Z. R., Goodman C. S. Drosophila neurotactin, a surface glycoprotein with homology to serine esterases, is dynamically expressed during embryogenesis. Development. 1990 Dec;110(4):1327–1340. doi: 10.1242/dev.110.4.1327. [DOI] [PubMed] [Google Scholar]
  16. Ichtchenko K., Hata Y., Nguyen T., Ullrich B., Missler M., Moomaw C., Südhof T. C. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell. 1995 May 5;81(3):435–443. doi: 10.1016/0092-8674(95)90396-8. [DOI] [PubMed] [Google Scholar]
  17. Johnson M. K. A phosphorylation site in brain and the delayed neurotoxic effect of some organophosphorus compounds. Biochem J. 1969 Feb;111(4):487–495. doi: 10.1042/bj1110487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson M. K. Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Arch Toxicol. 1977 Jun 18;37(2):113–115. doi: 10.1007/BF00293860. [DOI] [PubMed] [Google Scholar]
  19. Johnson M. K. Organophosphates and delayed neuropathy--is NTE alive and well? Toxicol Appl Pharmacol. 1990 Mar 1;102(3):385–399. doi: 10.1016/0041-008x(90)90036-t. [DOI] [PubMed] [Google Scholar]
  20. Johnson M. K., Read D. J. The influence of chirality on the delayed neuropathic potential of some organophosphorus esters: neuropathic and prophylactic effects of stereoisomeric esters of ethyl phenylphosphonic acid (EPN oxon and EPN) correlate with quantities of aged and unaged neuropathy target esterase in vivo. Toxicol Appl Pharmacol. 1987 Aug;90(1):103–115. doi: 10.1016/0041-008x(87)90311-5. [DOI] [PubMed] [Google Scholar]
  21. Johnson M. K. Sensitivity and selectivity of compounds interacting with neuropathy target esterase. Further structure-activity studies. Biochem Pharmacol. 1988 Nov 1;37(21):4095–4104. doi: 10.1016/0006-2952(88)90101-3. [DOI] [PubMed] [Google Scholar]
  22. Johnson M. K. The delayed neurotoxic effect of some organophosphorus compounds. Identification of the phosphorylation site as an esterase. Biochem J. 1969 Oct;114(4):711–717. doi: 10.1042/bj1140711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnson M. K. The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J Neurochem. 1974 Oct;23(4):785–789. doi: 10.1111/j.1471-4159.1974.tb04404.x. [DOI] [PubMed] [Google Scholar]
  24. Johnson P. M., Papamichail M., Gutierrez C., Holborow E. J. Interaction of the hinge region of human immunoglobulin G with a murine lymphocyte membrane receptor. Relevance to the problem of antiglobulin induction in rheumatoid arthritis. Immunology. 1975 May;28(5):797–805. [PMC free article] [PubMed] [Google Scholar]
  25. Krejci E., Duval N., Chatonnet A., Vincens P., Massoulié J. Cholinesterase-like domains in enzymes and structural proteins: functional and evolutionary relationships and identification of a catalytically essential aspartic acid. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6647–6651. doi: 10.1073/pnas.88.15.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kretzschmar D., Hasan G., Sharma S., Heisenberg M., Benzer S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J Neurosci. 1997 Oct 1;17(19):7425–7432. doi: 10.1523/JNEUROSCI.17-19-07425.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lange R., Hengge-Aronis R. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 1994 Jul 1;8(13):1600–1612. doi: 10.1101/gad.8.13.1600. [DOI] [PubMed] [Google Scholar]
  28. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  29. Lotti M. The pathogenesis of organophosphate polyneuropathy. Crit Rev Toxicol. 1991;21(6):465–487. doi: 10.3109/10408449209089884. [DOI] [PubMed] [Google Scholar]
  30. Lush M. J., Li Y., Read D. J., Willis A. C., Glynn P. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J. 1998 May 15;332(Pt 1):1–4. doi: 10.1042/bj3320001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mackay C. E., Hammock B. D., Wilson B. W. Identification and isolation of a 155-kDa protein with neuropathy target esterase activity. Fundam Appl Toxicol. 1996 Mar;30(1):23–30. doi: 10.1006/faat.1996.0039. [DOI] [PubMed] [Google Scholar]
  32. Medda S., Stevens A. M., Swank R. T. Involvement of the esterase active site of egasyn in compartmentalization of beta-glucuronidase within the endoplasmic reticulum. Cell. 1987 Jul 17;50(2):301–310. doi: 10.1016/0092-8674(87)90225-x. [DOI] [PubMed] [Google Scholar]
  33. Meredith C., Johnson M. K. Neuropathy target esterase: rates of turnover in vivo following covalent inhibition with phenyl di-n-pentylphosphinate. J Neurochem. 1988 Oct;51(4):1097–1101. doi: 10.1111/j.1471-4159.1988.tb03073.x. [DOI] [PubMed] [Google Scholar]
  34. Muffler A., Fischer D., Altuvia S., Storz G., Hengge-Aronis R. The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 1996 Mar 15;15(6):1333–1339. [PMC free article] [PubMed] [Google Scholar]
  35. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  36. Pope C. N., Padilla S. S. Chromatographic characterization of neurotoxic esterase. Biochem Pharmacol. 1989 Jan 1;38(1):181–188. doi: 10.1016/0006-2952(89)90166-4. [DOI] [PubMed] [Google Scholar]
  37. Pope C. N., Padilla S. Modulation of neurotoxic esterase activity in vitro by phospholipids. Toxicol Appl Pharmacol. 1989 Feb;97(2):272–278. doi: 10.1016/0041-008x(89)90332-3. [DOI] [PubMed] [Google Scholar]
  38. Public Health Weekly Reports for OCTOBER 17, 1930. Public Health Rep. 1930 Oct 17;45(42):2509–2607. [PMC free article] [PubMed] [Google Scholar]
  39. Richardson R. J., Davis C. S., Johnson M. K. Subcellular distribution of marker enzymes and of neurotoxic esterase in adult hen brain. J Neurochem. 1979 Feb;32(2):607–615. doi: 10.1111/j.1471-4159.1979.tb00391.x. [DOI] [PubMed] [Google Scholar]
  40. Rüffer-Turner M. E., Read D. J., Johnson M. K. Purification of neuropathy target esterase from avian brain after prelabelling with [3H]diisopropyl phosphorofluoridate. J Neurochem. 1992 Jan;58(1):135–141. doi: 10.1111/j.1471-4159.1992.tb09288.x. [DOI] [PubMed] [Google Scholar]
  41. Thomas T. C., Székács A., Rojas S., Hammock B. D., Wilson B. W., McNamee M. G. Characterization of neuropathy target esterase using trifluoromethyl ketones. Biochem Pharmacol. 1990 Dec 15;40(12):2587–2596. doi: 10.1016/0006-2952(90)90575-6. [DOI] [PubMed] [Google Scholar]
  42. Williams C. H. Beta-glucuronidase activity in the serum and liver of rats administered pesticides and hepatotoxic agents. Toxicol Appl Pharmacol. 1969 Mar;14(2):283–292. doi: 10.1016/0041-008x(69)90109-4. [DOI] [PubMed] [Google Scholar]
  43. Williams D. G., Johnson M. K. Gel-electrophoretic identification of hen brain neurotoxic esterase, labelled with tritiated di-isopropyl phosphorofluoridate. Biochem J. 1981 Nov 1;199(2):323–333. doi: 10.1042/bj1990323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu S. Y., Casida J. E. Neuropathy target esterase inhibitors: 2-alkyl-, 2-alkoxy-, and 2-(aryloxy)-4H-1,3,2-benzodioxaphosphorin 2-oxides. Chem Res Toxicol. 1992 Sep-Oct;5(5):680–684. doi: 10.1021/tx00029a014. [DOI] [PubMed] [Google Scholar]
  45. Yoshida M., Tomizawa M., Wu S. Y., Quistad G. B., Casida J. E. Neuropathy target esterase of hen brain: active site reactions with 2-[octyl-3H]octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide and 2-octyl-4H-1,3,2-[aryl-3H]benzodioxaphosphorin 2-oxide. J Neurochem. 1995 Apr;64(4):1680–1687. doi: 10.1046/j.1471-4159.1995.64041680.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES