Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):699–711.

Structural model for the organization of the transmembrane spans of the human red-cell anion exchanger (band 3; AE1).

J D Groves 1, M J Tanner 1
PMCID: PMC1220691  PMID: 10585856

Abstract

We have examined the functional co-assembly of non-complementary pairs of N- and C-terminal polypeptide fragments of the anion transport domain (b3mem) of human red-cell band 3. cDNA clones encoding non-contiguous pairs of fragments with one transmembrane (TM) region omitted, or overlapping pairs of fragments with between one and ten TM regions duplicated, were co-expressed in Xenopus oocytes and a cell-free translation system. Stilbene disulphonate-sensitive chloride uptake assays in oocytes revealed that the omission of any single TM region of b3mem except spans 6 and 7 caused a complete loss of functional expression. In contrast, co-expressed pairs of fragments overlapping a single TM region 5, 6, 7, 8, 9-10 or 11-12 retained a high level of functionality, whereas fragments overlapping the clusters of TM regions 2-5, 4-5, 5-8 and 8-10 also mediated some stilbene disulphonate-sensitive uptake. The co-assembly of N- or C-terminal fragments with intact band 3, b3mem or other fragments was examined by co-immunoprecipitation in non-denaturing detergent solutions by using monoclonal antibodies against the termini of b3mem. All the fragments, except for TM spans 13-14, co-immunoprecipitated with b3mem. The medium-sized N-terminal fragments comprising spans 1-6, 1-7 or 1-8 co-immunoprecipitated particularly strongly with the C-terminal fragments containing spans 8-14 or 9-14. The fragments comprising spans 1-4 or 1-12 co-immunoprecipitated less extensively than the other N-terminal fragments with either b3mem or C-terminal fragments. There is sufficient flexibility in the structure of b3mem to allow the inclusion of at least one duplicated TM span without a loss of function. We propose a working model for the organization of TM spans of dimeric band 3 based on current evidence.

Full Text

The Full Text of this article is available as a PDF (356.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruce L. J., Ring S. M., Anstee D. J., Reid M. E., Wilkinson S., Tanner M. J. Changes in the blood group Wright antigens are associated with a mutation at amino acid 658 in human erythrocyte band 3: a site of interaction between band 3 and glycophorin A under certain conditions. Blood. 1995 Jan 15;85(2):541–547. [PubMed] [Google Scholar]
  2. Casey J. R., Reithmeier R. A. Detergent interaction with band 3, a model polytopic membrane protein. Biochemistry. 1993 Feb 2;32(4):1172–1179. doi: 10.1021/bi00055a023. [DOI] [PubMed] [Google Scholar]
  3. Fujinaga J., Tang X. B., Casey J. R. Topology of the membrane domain of human erythrocyte anion exchange protein, AE1. J Biol Chem. 1999 Mar 5;274(10):6626–6633. doi: 10.1074/jbc.274.10.6626. [DOI] [PubMed] [Google Scholar]
  4. Grinstein S., Ship S., Rothstein A. Anion transport in relation to proteolytic dissection of band 3 protein. Biochim Biophys Acta. 1978 Feb 21;507(2):294–304. doi: 10.1016/0005-2736(78)90424-8. [DOI] [PubMed] [Google Scholar]
  5. Groves J. D., Tanner M. J. Co-expressed complementary fragments of the human red cell anion exchanger (band 3, AE1) generate stilbene disulfonate-sensitive anion transport. J Biol Chem. 1995 Apr 21;270(16):9097–9105. doi: 10.1074/jbc.270.16.9097. [DOI] [PubMed] [Google Scholar]
  6. Groves J. D., Tanner M. J. Glycophorin A facilitates the expression of human band 3-mediated anion transport in Xenopus oocytes. J Biol Chem. 1992 Nov 5;267(31):22163–22170. [PubMed] [Google Scholar]
  7. Groves J. D., Tanner M. J. The effects of glycophorin A on the expression of the human red cell anion transporter (band 3) in Xenopus oocytes. J Membr Biol. 1994 May;140(1):81–88. doi: 10.1007/BF00234488. [DOI] [PubMed] [Google Scholar]
  8. Groves J. D., Tanner M. J. Topology studies with biosynthetic fragments identify interacting transmembrane regions of the human red-cell anion exchanger (band 3; AE1). Biochem J. 1999 Dec 15;344(Pt 3):687–697. [PMC free article] [PubMed] [Google Scholar]
  9. Groves J. D., Wang L., Tanner M. J. Complementation studies with co-expressed fragments of human red cell band 3 (AE1): the assembly of the anion-transport domain in xenopus oocytes and a cell-free translation system. Biochem J. 1998 May 15;332(Pt 1):161–171. doi: 10.1042/bj3320161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Groves J. D., Wang L., Tanner M. J. Functional reassembly of the anion transport domain of human red cell band 3 (AE1) from multiple and non-complementary fragments. FEBS Lett. 1998 Aug 21;433(3):223–227. doi: 10.1016/s0014-5793(98)00909-0. [DOI] [PubMed] [Google Scholar]
  11. Jennings M. L. Structure and function of the red blood cell anion transport protein. Annu Rev Biophys Biophys Chem. 1989;18:397–430. doi: 10.1146/annurev.bb.18.060189.002145. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lepke S., Becker A., Passow H. Mediation of inorganic anion transport by the hydrophobic domain of mouse erythroid band 3 protein expressed in oocytes of Xenopus laevis. Biochim Biophys Acta. 1992 Apr 29;1106(1):13–16. doi: 10.1016/0005-2736(92)90215-8. [DOI] [PubMed] [Google Scholar]
  14. Lepke S., Passow H. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Biochim Biophys Acta. 1976 Dec 2;455(2):353–370. doi: 10.1016/0005-2736(76)90311-4. [DOI] [PubMed] [Google Scholar]
  15. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  16. Ota K., Sakaguchi M., Hamasaki N., Mihara K. Assessment of topogenic functions of anticipated transmembrane segments of human band 3. J Biol Chem. 1998 Oct 23;273(43):28286–28291. doi: 10.1074/jbc.273.43.28286. [DOI] [PubMed] [Google Scholar]
  17. Ota K., Sakaguchi M., von Heijne G., Hamasaki N., Mihara K. Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. Mol Cell. 1998 Oct;2(4):495–503. doi: 10.1016/s1097-2765(00)80149-5. [DOI] [PubMed] [Google Scholar]
  18. Popov M., Li J., Reithmeier R. A. Transmembrane folding of the human erythrocyte anion exchanger (AE1, Band 3) determined by scanning and insertional N-glycosylation mutagenesis. Biochem J. 1999 Apr 15;339(Pt 2):269–279. [PMC free article] [PubMed] [Google Scholar]
  19. Popov M., Tam L. Y., Li J., Reithmeier R. A. Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3. J Biol Chem. 1997 Jul 18;272(29):18325–18332. doi: 10.1074/jbc.272.29.18325. [DOI] [PubMed] [Google Scholar]
  20. Tang X. B., Fujinaga J., Kopito R., Casey J. R. Topology of the region surrounding Glu681 of human AE1 protein, the erythrocyte anion exchanger. J Biol Chem. 1998 Aug 28;273(35):22545–22553. doi: 10.1074/jbc.273.35.22545. [DOI] [PubMed] [Google Scholar]
  21. Tanner M. J. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol. 1993 Jan;30(1):34–57. [PubMed] [Google Scholar]
  22. Tanner M. J. Proteolytic cleavage of the anion transporter and its orientation in the membrane. Methods Enzymol. 1989;173:423–432. doi: 10.1016/s0076-6879(89)73030-5. [DOI] [PubMed] [Google Scholar]
  23. Tanner M. J. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol. 1997 Oct-Dec;14(4):155–165. doi: 10.3109/09687689709048178. [DOI] [PubMed] [Google Scholar]
  24. Tanphaichitr V. S., Sumboonnanonda A., Ideguchi H., Shayakul C., Brugnara C., Takao M., Veerakul G., Alper S. L. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest. 1998 Dec 15;102(12):2173–2179. doi: 10.1172/JCI4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wainwright S. D., Tanner M. J., Martin G. E., Yendle J. E., Holmes C. Monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein. Localization of the C-terminus of the protein to the cytoplasmic side of the red cell membrane and distribution of the protein in some human tissues. Biochem J. 1989 Feb 15;258(1):211–220. doi: 10.1042/bj2580211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang D. N., Sarabia V. E., Reithmeier R. A., Kühlbrandt W. Three-dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J. 1994 Jul 15;13(14):3230–3235. doi: 10.1002/j.1460-2075.1994.tb06624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang L., Groves J. D., Mawby W. J., Tanner M. J. Complementation studies with Co-expressed fragments of the human red cell anion transporter (Band 3; AE1). The role of some exofacial loops in anion transport. J Biol Chem. 1997 Apr 18;272(16):10631–10638. doi: 10.1074/jbc.272.16.10631. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES