Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):739–746.

Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB).

P A Jordan 1, Y Tang 1, A J Bradbury 1, A J Thomson 1, J R Guest 1
PMCID: PMC1220695  PMID: 10585860

Abstract

Escherichia coli contains two major aconitases (Acns), AcnA and AcnB. They are distantly related monomeric Fe-S proteins that contain different arrangements of four structural domains. On the basis of the differential expression of the acnA and acnB genes, AcnA has been designated as an aerobic-stationary-phase enzyme that is specifically induced by iron and oxidative stress, whereas AcnB functions as the major citric-acid-cycle enzyme during exponential growth. The biochemical and kinetic properties of the purified enzymes have now shown that AcnA is more stable than AcnB, has a higher affinity for citrate, and operates optimally over a wider pH range, consistent with its role as a maintenance or survival enzyme during nutritional or oxidative stress. In contrast, the better performance at high substrate concentrations and greater instability of AcnB indicate that AcnB is specifically adapted to function as the main catabolic enzyme and, by inactivation, to rapidly modulate energy metabolism in response to oxidative or pH stress, either directly or indirectly by regulating post-transcriptional gene expression. EPR and magnetic-CD spectroscopy showed that the iron-sulphur clusters of the bacterial Acns (and their binding sites) strongly resemble those of the mammalian enzymes. The EPR and MCD spectra of the oxidized inactive form of AcnB confirmed the presence of a [3Fe-4S](1+) (S=1/2) cluster. Comparisons showed that the EPR spectrum of AcnB more closely resembled that of mammalian mitochondrial Acn (m-Acn), whereas the spectrum of AcnA more closely resembled that of the cytoplasmic enzyme (c-Acn). The MCD spectra revealed spectroscopic signatures similar to that of m-Acn. Reconstitution of the active [4Fe-4S](2+) forms followed by one-electron reduction gave rise to EPR spectra that are almost identical with those reported for the mammalian enzymes.

Full Text

The Full Text of this article is available as a PDF (175.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beinert H., Kennedy M. C. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem. 1989 Dec 8;186(1-2):5–15. doi: 10.1111/j.1432-1033.1989.tb15170.x. [DOI] [PubMed] [Google Scholar]
  2. Beinert H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem. 1983 Jun;131(2):373–378. doi: 10.1016/0003-2697(83)90186-0. [DOI] [PubMed] [Google Scholar]
  3. Beinert Helmut, Kennedy Mary Claire, Stout C. David. Aconitase as Ironminus signSulfur Protein, Enzyme, and Iron-Regulatory Protein. Chem Rev. 1996 Nov 7;96(7):2335–2374. doi: 10.1021/cr950040z. [DOI] [PubMed] [Google Scholar]
  4. Bennett B., Gruer M. J., Guest J. R., Thomson A. J. Spectroscopic characterisation of an aconitase (AcnA) of Escherichia coli. Eur J Biochem. 1995 Oct 1;233(1):317–326. doi: 10.1111/j.1432-1033.1995.317_1.x. [DOI] [PubMed] [Google Scholar]
  5. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  6. Bradbury A. J., Gruer M. J., Rudd K. E., Guest J. R. The second aconitase (AcnB) of Escherichia coli. Microbiology. 1996 Feb;142(Pt 2):389–400. doi: 10.1099/13500872-142-2-389. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Cunningham L., Gruer M. J., Guest J. R. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology. 1997 Dec;143(Pt 12):3795–3805. doi: 10.1099/00221287-143-12-3795. [DOI] [PubMed] [Google Scholar]
  9. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Emptage M. H., Dreyers J. L., Kennedy M. C., Beinert H. Optical and EPR characterization of different species of active and inactive aconitase. J Biol Chem. 1983 Sep 25;258(18):11106–11111. [PubMed] [Google Scholar]
  11. Frishman D., Hentze M. W. Conservation of aconitase residues revealed by multiple sequence analysis. Implications for structure/function relationships. Eur J Biochem. 1996 Jul 1;239(1):197–200. doi: 10.1111/j.1432-1033.1996.0197u.x. [DOI] [PubMed] [Google Scholar]
  12. Gruer M. J., Artymiuk P. J., Guest J. R. The aconitase family: three structural variations on a common theme. Trends Biochem Sci. 1997 Jan;22(1):3–6. doi: 10.1016/s0968-0004(96)10069-4. [DOI] [PubMed] [Google Scholar]
  13. Gruer M. J., Bradbury A. J., Guest J. R. Construction and properties of aconitase mutants of Escherichia coli. Microbiology. 1997 Jun;143(Pt 6):1837–1846. doi: 10.1099/00221287-143-6-1837. [DOI] [PubMed] [Google Scholar]
  14. Gruer M. J., Guest J. R. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology. 1994 Oct;140(Pt 10):2531–2541. doi: 10.1099/00221287-140-10-2531. [DOI] [PubMed] [Google Scholar]
  15. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  16. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kennedy M. C., Beinert H. The state of cluster SH and S2- of aconitase during cluster interconversions and removal. A convenient preparation of apoenzyme. J Biol Chem. 1988 Jun 15;263(17):8194–8198. [PubMed] [Google Scholar]
  18. Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H. The role of iron in the activation-inactivation of aconitase. J Biol Chem. 1983 Sep 25;258(18):11098–11105. [PubMed] [Google Scholar]
  19. Kennedy M. C., Mende-Mueller L., Blondin G. A., Beinert H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11730–11734. doi: 10.1073/pnas.89.24.11730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klausner R. D., Rouault T. A. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell. 1993 Jan;4(1):1–5. doi: 10.1091/mbc.4.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Meisenberger O., Pilz I., Bowien B., Pal G. P., Saenger W. Small angle x-ray study on the structure of active and inactive ribulose bisphosphate carboxylase from Alcaligenes eutrophus. Evidence for a configurational change. J Biol Chem. 1984 Apr 10;259(7):4463–4465. [PubMed] [Google Scholar]
  23. Prodromou C., Artymiuk P. J., Guest J. R. The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem. 1992 Mar 1;204(2):599–609. doi: 10.1111/j.1432-1033.1992.tb16673.x. [DOI] [PubMed] [Google Scholar]
  24. Prodromou C., Haynes M. J., Guest J. R. The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). J Gen Microbiol. 1991 Nov;137(11):2505–2515. doi: 10.1099/00221287-137-11-2505. [DOI] [PubMed] [Google Scholar]
  25. Robbins A. H., Stout C. D. The structure of aconitase. Proteins. 1989;5(4):289–312. doi: 10.1002/prot.340050406. [DOI] [PubMed] [Google Scholar]
  26. Rouault T. A., Klausner R. D. Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci. 1996 May;21(5):174–177. [PubMed] [Google Scholar]
  27. Tang Y., Guest J. R. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology. 1999 Nov;145(Pt 11):3069–3079. doi: 10.1099/00221287-145-11-3069. [DOI] [PubMed] [Google Scholar]
  28. Textor S., Wendisch V. F., De Graaf A. A., Müller U., Linder M. I., Linder D., Buckel W. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol. 1997 Nov;168(5):428–436. doi: 10.1007/s002030050518. [DOI] [PubMed] [Google Scholar]
  29. Thomson A. J., Cheesman M. R., George S. J. Variable-temperature magnetic circular dichroism. Methods Enzymol. 1993;226:199–232. doi: 10.1016/0076-6879(93)26011-w. [DOI] [PubMed] [Google Scholar]
  30. Wilde R. J., Jeyaseelan K., Guest J. R. Cloning of the aconitase gene (acn) of Escherichia coli K12. J Gen Microbiol. 1986 Jun;132(6):1763–1766. doi: 10.1099/00221287-132-6-1763. [DOI] [PubMed] [Google Scholar]
  31. Woodland M. P., Dalton H. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1984 Jan 10;259(1):53–59. [PubMed] [Google Scholar]
  32. Wootton J. C. Re-assessment of ammonium-ion affinities of NADP-specific glutamate dehydrogenases. Activation of the Neurospora crassa enzyme by ammonium and rubidium ions. Biochem J. 1983 Feb 1;209(2):527–531. doi: 10.1042/bj2090527. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES