Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):787–795. doi: 10.1042/bj3440787

Proteophosphoglycans of Leishmania mexicana. Molecular cloning and characterization of the Leishmania mexicana ppg2 gene encoding the proteophosphoglycans aPPG and pPPG2 that are secreted by amastigotes and promastigotes.

U Göpfert 1, N Goehring 1, C Klein 1, T Ilg 1
PMCID: PMC1220700  PMID: 10585865

Abstract

Intracellular amastigotes of the pathogenic protozoon Leishmania mexicana secrete an extensively phosphoglycosylated proteophosphoglycan (aPPG) into the phagolysosome of mammalian host macrophages, that appears to fulfil important functions for the parasites. Promastigotes (the sandfly vector forms) of the same species secrete a proteophosphoglycan with identical protein backbone but exhibiting stage-specific phosphoglycosylation patterns [Klein, Göpfert, Goehring, Stierhof and Ilg (1999) Biochem. J. 344, 775-786]. In this study we report the cloning of the novel repeat-containing proteophosphoglycan gene ppg2 by antibody screening of a Leishmania mexicana amastigote cDNA expression library. ppg2 is equally expressed in promastigotes and amastigotes at the mRNA level. Targeted gene replacement of both alleles of the single copy gene ppg2 results in the loss of pPPG2 expression in promastigotes. Antisera against Escherichia coli-expressed ppg2 recognize the deglycosylated forms of aPPG as well as pPPG2. These results confirm that ppg2 encodes the protein backbones of aPPG and pPPG2. An unusual finding is that ppg2 exhibits two stable allelic forms, ppg2a and ppg2b. Their main difference lies in the number of central 72 bp DNA repeats (7 versus 8). ppg2a and ppg2b encode polypeptide chains of 574 and 598 amino acids, respectively, that show no homology to known proteins. The novel 24 amino acid Ser-rich peptide repeats encoded by the 72 bp DNA repeats are targets for Ser phosphoglycosylation in Leishmania mexicana.

Full Text

The Full Text of this article is available as a PDF (354.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Qahtani A., Teilhet M., Mensa-Wilmot K. Species-specificity in endoplasmic reticulum signal peptide utilization revealed by proteins from Trypanosoma brucei and Leishmania. Biochem J. 1998 Apr 15;331(Pt 2):521–529. doi: 10.1042/bj3310521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beverley S. M., Turco S. J. Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol. 1998 Jan;6(1):35–40. doi: 10.1016/S0966-842X(97)01180-3. [DOI] [PubMed] [Google Scholar]
  3. Brown G. M., Millar A. R., Masterson C., Brimacombe J. S., Nikolaev A. V., Ferguson M. A. Synthetic phospho-oligosaccharide fragments of lipophosphoglycan as acceptors for Leishmania major alpha-D-mannosylphosphate transferase. Eur J Biochem. 1996 Dec 1;242(2):410–416. doi: 10.1111/j.1432-1033.1996.0410r.x. [DOI] [PubMed] [Google Scholar]
  4. Carver M. A., Turco S. J. Biosynthesis of lipophosphoglycan from Leishmania donovani: characterization of mannosylphosphate transfer in vitro. Arch Biochem Biophys. 1992 Jun;295(2):309–317. doi: 10.1016/0003-9861(92)90523-y. [DOI] [PubMed] [Google Scholar]
  5. Carver M. A., Turco S. J. Cell-free biosynthesis of lipophosphoglycan from Leishmania donovani. Characterization of microsomal galactosyltransferase and mannosyltransferase activities. J Biol Chem. 1991 Jun 15;266(17):10974–10981. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cruz A., Coburn C. M., Beverley S. M. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7170–7174. doi: 10.1073/pnas.88.16.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Descoteaux A., Luo Y., Turco S. J., Beverley S. M. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995 Sep 29;269(5232):1869–1872. doi: 10.1126/science.7569927. [DOI] [PubMed] [Google Scholar]
  9. Gendler S. J., Spicer A. P. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–634. doi: 10.1146/annurev.ph.57.030195.003135. [DOI] [PubMed] [Google Scholar]
  10. Gueiros-Filho F. J., Beverley S. M. Selection against the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus as a probe of genetic alterations in Leishmania major. Mol Cell Biol. 1996 Oct;16(10):5655–5663. doi: 10.1128/mcb.16.10.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang C., Turco S. J. Defective galactofuranose addition in lipophosphoglycan biosynthesis in a mutant of Leishmania donovani. J Biol Chem. 1993 Nov 15;268(32):24060–24066. [PubMed] [Google Scholar]
  12. Ilg T., Craik D., Currie G., Multhaup G., Bacic A. Stage-specific proteophosphoglycan from Leishmania mexicana amastigotes. Structural characterization of novel mono-, di-, and triphosphorylated phosphodiester-linked oligosaccharides. J Biol Chem. 1998 May 29;273(22):13509–13523. doi: 10.1074/jbc.273.22.13509. [DOI] [PubMed] [Google Scholar]
  13. Ilg T., Overath P., Ferguson M. A., Rutherford T., Campbell D. G., McConville M. J. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem. 1994 Sep 30;269(39):24073–24081. [PubMed] [Google Scholar]
  14. Ilg T., Stierhof Y. D., Craik D., Simpson R., Handman E., Bacic A. Purification and structural characterization of a filamentous, mucin-like proteophosphoglycan secreted by Leishmania parasites. J Biol Chem. 1996 Aug 30;271(35):21583–21596. doi: 10.1074/jbc.271.35.21583. [DOI] [PubMed] [Google Scholar]
  15. Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. King D. L., Turco S. J. A ricin agglutinin-resistant clone of Leishmania donovani deficient in lipophosphoglycan. Mol Biochem Parasitol. 1988 Apr;28(3):285–293. doi: 10.1016/0166-6851(88)90013-8. [DOI] [PubMed] [Google Scholar]
  17. Klein C., Göpfert U., Goehring N., Stierhof Y. D., Ilg T. Proteophosphoglycans of Leishmania mexicana. Identification, purification, structural and ultrastructural characterization of the secreted promastigote proteophosphoglycan pPPG2, a stage-specific glycoisoform of amastigote aPPG. Biochem J. 1999 Dec 15;344(Pt 3):775–786. doi: 10.1042/bj3440775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  19. LeBowitz J. H., Coburn C. M., McMahon-Pratt D., Beverley S. M. Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9736–9740. doi: 10.1073/pnas.87.24.9736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ma D., Russell D. G., Beverley S. M., Turco S. J. Golgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters. J Biol Chem. 1997 Feb 7;272(6):3799–3805. [PubMed] [Google Scholar]
  21. Maxwell A. DNA gyrase as a drug target. Biochem Soc Trans. 1999 Feb;27(2):48–53. doi: 10.1042/bst0270048. [DOI] [PubMed] [Google Scholar]
  22. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mehta D. P., Ichikawa M., Salimath P. V., Etchison J. R., Haak R., Manzi A., Freeze H. H. A lysosomal cysteine proteinase from Dictyostelium discoideum contains N-acetylglucosamine-1-phosphate bound to serine but not mannose-6-phosphate on N-linked oligosaccharides. J Biol Chem. 1996 May 3;271(18):10897–10903. doi: 10.1074/jbc.271.18.10897. [DOI] [PubMed] [Google Scholar]
  24. Mengeling B. J., Beverley S. M., Turco S. J. Designing glycoconjugate biosynthesis for an insidious intent: phosphoglycan assembly in Leishmania parasites. Glycobiology. 1997 Oct;7(7):873–880. doi: 10.1093/glycob/7.7.873-c. [DOI] [PubMed] [Google Scholar]
  25. Mengeling B. J., Zilberstein D., Turco S. J. Biosynthesis of Leishmania lipophosphoglycan: solubilization and partial characterization of the initiating mannosylphosphoryltransferase. Glycobiology. 1997 Sep;7(6):847–853. doi: 10.1093/glycob/7.6.847. [DOI] [PubMed] [Google Scholar]
  26. Menz B., Winter G., Ilg T., Lottspeich F., Overath P. Purification and characterization of a membrane-bound acid phosphatase of Leishmania mexicana. Mol Biochem Parasitol. 1991 Jul;47(1):101–108. doi: 10.1016/0166-6851(91)90152-v. [DOI] [PubMed] [Google Scholar]
  27. Moss J. M., Reid G. E., Mullin K. A., Zawadzki J. L., Simpson R. J., McConville M. J. Characterization of a novel GDP-mannose:Serine-protein mannose-1-phosphotransferase from Leishmania mexicana. J Biol Chem. 1999 Mar 5;274(10):6678–6688. doi: 10.1074/jbc.274.10.6678. [DOI] [PubMed] [Google Scholar]
  28. Ng K., Handman E., Bacic A. Biosynthesis of lipophosphoglycan from Leishmania major: characterization of (beta 1-3)-galactosyltransferase(s). Glycobiology. 1994 Dec;4(6):845–853. doi: 10.1093/glycob/4.6.845. [DOI] [PubMed] [Google Scholar]
  29. Ng K., Handman E., Bacic A. Biosynthesis of lipophosphoglycan from Leishmania major: solubilization and characterization of a (beta 1-3)-galactosyltransferase. Biochem J. 1996 Jul 1;317(Pt 1):247–255. doi: 10.1042/bj3170247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peters C., Kawakami M., Kaul M., Ilg T., Overath P., Aebischer T. Secreted proteophosphoglycan of Leishmania mexicana amastigotes activates complement by triggering the mannan binding lectin pathway. Eur J Immunol. 1997 Oct;27(10):2666–2672. doi: 10.1002/eji.1830271028. [DOI] [PubMed] [Google Scholar]
  31. Peters C., Stierhof Y. D., Ilg T. Proteophosphoglycan secreted by Leishmania mexicana amastigotes causes vacuole formation in macrophages. Infect Immun. 1997 Feb;65(2):783–786. doi: 10.1128/iai.65.2.783-786.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shakarian A. M., Ellis S. L., Mallinson D. J., Olafson R. W., Dwyer D. M. Two tandemly arrayed genes encode the (histidine) secretory acid phosphatases of Leishmania donovani. Gene. 1997 Sep 1;196(1-2):127–137. doi: 10.1016/s0378-1119(97)00218-7. [DOI] [PubMed] [Google Scholar]
  35. Stierhof Y. D., Wiese M., Ilg T., Overath P., Häner M., Aebi U. Structure of a filamentous phosphoglycoprotein polymer: the secreted acid phosphatase of Leishmania mexicana. J Mol Biol. 1998 Sep 11;282(1):137–148. doi: 10.1006/jmbi.1998.2012. [DOI] [PubMed] [Google Scholar]
  36. Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
  37. Wiese M., Ilg T., Lottspeich F., Overath P. Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. EMBO J. 1995 Mar 15;14(6):1067–1074. doi: 10.1002/j.1460-2075.1995.tb07089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wolfram M., Fuchs M., Wiese M., Stierhof Y. D., Overath P. Antigen presentation by Leishmania mexicana-infected macrophages: activation of helper T cells by a model parasite antigen secreted into the parasitophorous vacuole or expressed on the amastigote surface. Eur J Immunol. 1996 Dec;26(12):3153–3162. doi: 10.1002/eji.1830261248. [DOI] [PubMed] [Google Scholar]
  39. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES