Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):845–849.

Identification of an anti-mycobacterial domain in NK-lysin and granulysin.

D Andreu 1, C Carreño 1, C Linde 1, H G Boman 1, M Andersson 1
PMCID: PMC1220707  PMID: 10585872

Abstract

NK-lysin and granulysin are homologous cationic anti-bacterial peptides produced by pig and human cytolytic lymphocytes, respectively. The solution structure of NK-lysin comprises five amphipathic alpha-helices. To investigate the properties of a helix-loop-helix region postulated to be a membrane-docking part of NK-lysin, we synthesized 22- and 29-residue peptides reproducing this region for both NK-lysin and granulysin. CD spectroscopy of the synthetic peptides in a liposomal solution showed spectra typical of alpha-helical peptides. The peptides were active against Gram-positive and Gram-negative bacteria, with the two NK-lysin peptides showing higher anti-bacterial activities than the two from granulysin. One NK-lysin peptide was active against Pseudomonas aeruginosa and Staphylococcus aureus, two organisms against which NK-lysin is inactive. Granulysin peptides were inactive against these bacteria, in contrast with granulysin, which is known to be active against them. Both NK-lysin and all synthetic analogues killed Mycobacterium tuberculosis and K562 tumour cells, but did not display haemolytic activity. These results identify a potent anti-mycobacterial domain in NK-lysin and granulysin consisting of a 22-residue (helix 3) sequence plus a disulphide-constrained loop.

Full Text

The Full Text of this article is available as a PDF (147.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Curstedt T., Jörnvall H., Johansson J. An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett. 1995 Apr 10;362(3):328–332. doi: 10.1016/0014-5793(95)00268-e. [DOI] [PubMed] [Google Scholar]
  2. Andersson M., Girard R., Cazenave P. Interaction of NK lysin, a peptide produced by cytolytic lymphocytes, with endotoxin. Infect Immun. 1999 Jan;67(1):201–205. doi: 10.1128/iai.67.1.201-205.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson M., Gunne H., Agerberth B., Boman A., Bergman T., Sillard R., Jörnvall H., Mutt V., Olsson B., Wigzell H. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J. 1995 Apr 18;14(8):1615–1625. doi: 10.1002/j.1460-2075.1995.tb07150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersson M., Holmgren A., Spyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity. J Biol Chem. 1996 Apr 26;271(17):10116–10120. doi: 10.1074/jbc.271.17.10116. [DOI] [PubMed] [Google Scholar]
  5. Andreu D., Albericio F., Solé N. A., Munson M. C., Ferrer M., Barany G. Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol Biol. 1994;35:91–169. doi: 10.1385/0-89603-273-6:91. [DOI] [PubMed] [Google Scholar]
  6. Andreu D., Rivas L. Animal antimicrobial peptides: an overview. Biopolymers. 1998;47(6):415–433. doi: 10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  7. Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta. 1992 May 22;1121(1-2):130–136. doi: 10.1016/0167-4838(92)90346-f. [DOI] [PubMed] [Google Scholar]
  8. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  9. Fahrner R. L., Dieckmann T., Harwig S. S., Lehrer R. I., Eisenberg D., Feigon J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol. 1996 Jul;3(7):543–550. doi: 10.1016/s1074-5521(96)90145-3. [DOI] [PubMed] [Google Scholar]
  10. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  11. Hill C. P., Yee J., Selsted M. E., Eisenberg D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science. 1991 Mar 22;251(5000):1481–1485. doi: 10.1126/science.2006422. [DOI] [PubMed] [Google Scholar]
  12. Hultmark D., Engström A., Andersson K., Steiner H., Bennich H., Boman H. G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571–576. doi: 10.1002/j.1460-2075.1983.tb01465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iwanaga S., Muta T., Shigenaga T., Seki N., Kawano K., Katsu T., Kawabata S. Structure-function relationships of tachyplesins and their analogues. Ciba Found Symp. 1994;186:160–175. doi: 10.1002/9780470514658.ch10. [DOI] [PubMed] [Google Scholar]
  14. Johansson J., Gudmundsson G. H., Rottenberg M. E., Berndt K. D., Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem. 1998 Feb 6;273(6):3718–3724. doi: 10.1074/jbc.273.6.3718. [DOI] [PubMed] [Google Scholar]
  15. Kokryakov V. N., Harwig S. S., Panyutich E. A., Shevchenko A. A., Aleshina G. M., Shamova O. V., Korneva H. A., Lehrer R. I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993 Jul 26;327(2):231–236. doi: 10.1016/0014-5793(93)80175-t. [DOI] [PubMed] [Google Scholar]
  16. Kreil G. Antimicrobial peptides from amphibian skin: an overview. Ciba Found Symp. 1994;186:77–90. doi: 10.1002/9780470514658.ch5. [DOI] [PubMed] [Google Scholar]
  17. Lehrer R. I., Ganz T., Selsted M. E. Defensins: endogenous antibiotic peptides of animal cells. Cell. 1991 Jan 25;64(2):229–230. doi: 10.1016/0092-8674(91)90632-9. [DOI] [PubMed] [Google Scholar]
  18. Liepinsh E., Andersson M., Ruysschaert J. M., Otting G. Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol. 1997 Oct;4(10):793–795. doi: 10.1038/nsb1097-793. [DOI] [PubMed] [Google Scholar]
  19. Middlebrook G., Reggiardo Z., Tigertt W. D. Automatable radiometric detection of growth of Mycobacterium tuberculosis in selective media. Am Rev Respir Dis. 1977 Jun;115(6):1066–1069. doi: 10.1164/arrd.1977.115.6.1066. [DOI] [PubMed] [Google Scholar]
  20. Miyakawa Y., Ratnakar P., Rao A. G., Costello M. L., Mathieu-Costello O., Lehrer R. I., Catanzaro A. In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect Immun. 1996 Mar;64(3):926–932. doi: 10.1128/iai.64.3.926-932.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morrisett J. D., David J. S., Pownall H. J., Gotto A. M., Jr Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry. 1973 Mar 27;12(7):1290–1299. doi: 10.1021/bi00731a008. [DOI] [PubMed] [Google Scholar]
  22. Peña S. V., Hanson D. A., Carr B. A., Goralski T. J., Krensky A. M. Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins. J Immunol. 1997 Mar 15;158(6):2680–2688. [PubMed] [Google Scholar]
  23. Romeo D., Skerlavaj B., Bolognesi M., Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem. 1988 Jul 15;263(20):9573–9575. [PubMed] [Google Scholar]
  24. Ruysschaert J. M., Goormaghtigh E., Homblé F., Andersson M., Liepinsh E., Otting G. Lipid membrane binding of NK-lysin. FEBS Lett. 1998 Mar 27;425(2):341–344. doi: 10.1016/s0014-5793(98)00261-0. [DOI] [PubMed] [Google Scholar]
  25. Stenger S., Hanson D. A., Teitelbaum R., Dewan P., Niazi K. R., Froelich C. J., Ganz T., Thoma-Uszynski S., Melián A., Bogdan C. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998 Oct 2;282(5386):121–125. doi: 10.1126/science.282.5386.121. [DOI] [PubMed] [Google Scholar]
  26. Thennarasu S., Nagaraj R. Synthetic peptides corresponding to the beta-hairpin loop of rabbit defensin NP-2 show antimicrobial activity. Biochem Biophys Res Commun. 1999 Jan 19;254(2):281–283. doi: 10.1006/bbrc.1998.9933. [DOI] [PubMed] [Google Scholar]
  27. Tschopp J., Hofmann K. Cytotoxic T cells: more weapons for new targets? Trends Microbiol. 1996 Mar;4(3):91–94. doi: 10.1016/0966-842X(96)81522-8. [DOI] [PubMed] [Google Scholar]
  28. Zimmermann G. R., Legault P., Selsted M. E., Pardi A. Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry. 1995 Oct 17;34(41):13663–13671. doi: 10.1021/bi00041a048. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES