Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):859–866.

Direct interaction between p47phox and protein kinase C: evidence for targeting of protein kinase C by p47phox in neutrophils.

E P Reeves 1, L V Dekker 1, L V Forbes 1, F B Wientjes 1, A Grogan 1, D J Pappin 1, A W Segal 1
PMCID: PMC1220709  PMID: 10585874

Abstract

p47(phox) is an essential component of the NADPH oxidase, and phosphorylation of p47(phox) is associated with activation of the enzyme. Here we have used p47(phox) affinity chromatography to extract a p47(phox) kinase from neutrophil cytosol. The kinase activity was purified by gel filtration and Mini Q chromatography and shown to be indistinguishable from the catalytic fragments of protein kinase C (PKC)-beta(I), -beta(II) and -delta. The C-terminus of p47(phox) represented the site of interaction with PKC. Co-immunoprecipitation experiments revealed that the interaction between PKC isotypes and p47(phox) takes place in intact cells. However PKC-beta and -delta showed different time courses of co-immunoprecipitation, suggesting that the interactions may serve different functions for the various PKC isotypes. Using cells lacking p47(phox), we investigated the functional relevance of the interaction between PKC and p47(phox). Subcellular fractionation revealed an abnormal recruitment of PKC-beta(I) and -beta(II), but not PKC-delta, to particulate fractions in p47(phox)-deficient cells. Phosphorylation of cytosolic proteins was generally increased in stimulated p47(phox)-deficient neutrophils as compared with normal neutrophils. Furthermore, the cytoskeletal protein coronin was not phosphorylated upon stimulation of p47(phox)-deficient neutrophils. These findings were confirmed in an in vitro-reconstituted system using rat brain cytosol in which addition of p47(phox) affected phosphorylation by PKC/PKM (PKM is the catalytic fragment of PKC). These results indicate that p47(phox) can act as a regulator of PKC in neutrophils.

Full Text

The Full Text of this article is available as a PDF (326.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  2. Combadière C., Hakim J., Giroud J. P., Périanin A. Staurosporine, a protein kinase inhibitor, up-regulates the stimulation of human neutrophil respiratory burst by N-formyl peptides and platelet activating factor. Biochem Biophys Res Commun. 1990 Apr 16;168(1):65–70. doi: 10.1016/0006-291x(90)91675-i. [DOI] [PubMed] [Google Scholar]
  3. Curnutte J. T., Erickson R. W., Ding J., Badwey J. A. Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester. J Biol Chem. 1994 Apr 8;269(14):10813–10819. [PubMed] [Google Scholar]
  4. De Leo F. R., Ulman K. V., Davis A. R., Jutila K. L., Quinn M. T. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem. 1996 Jul 19;271(29):17013–17020. doi: 10.1074/jbc.271.29.17013. [DOI] [PubMed] [Google Scholar]
  5. Dekker L. V., Parker P. J. Regulated binding of the protein kinase C substrate GAP-43 to the V0/C2 region of protein kinase C-delta. J Biol Chem. 1997 May 9;272(19):12747–12753. doi: 10.1074/jbc.272.19.12747. [DOI] [PubMed] [Google Scholar]
  6. Dusi S., Rossi F. Activation of NADPH oxidase of human neutrophils involves the phosphorylation and the translocation of cytosolic p67phox. Biochem J. 1993 Dec 1;296(Pt 2):367–371. doi: 10.1042/bj2960367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. El Benna J., Faust R. P., Johnson J. L., Babior B. M. Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem. 1996 Mar 15;271(11):6374–6378. doi: 10.1074/jbc.271.11.6374. [DOI] [PubMed] [Google Scholar]
  8. El Benna J., Han J., Park J. W., Schmid E., Ulevitch R. J., Babior B. M. Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. Arch Biochem Biophys. 1996 Oct 15;334(2):395–400. doi: 10.1006/abbi.1996.0470. [DOI] [PubMed] [Google Scholar]
  9. Finan P., Shimizu Y., Gout I., Hsuan J., Truong O., Butcher C., Bennett P., Waterfield M. D., Kellie S. An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem. 1994 May 13;269(19):13752–13755. [PubMed] [Google Scholar]
  10. Forbes L. V., Truong O., Wientjes F. B., Moss S. J., Segal A. W. The major phosphorylation site of the NADPH oxidase component p67phox is Thr233. Biochem J. 1999 Feb 15;338(Pt 1):99–105. [PMC free article] [PubMed] [Google Scholar]
  11. Fuchs A., Bouin A. P., Rabilloud T., Vignais P. V. The 40-kDa component of the phagocyte NADPH oxidase (p40phox) is phosphorylated during activation in differentiated HL60 cells. Eur J Biochem. 1997 Oct 15;249(2):531–539. doi: 10.1111/j.1432-1033.1997.00531.x. [DOI] [PubMed] [Google Scholar]
  12. Fujise A., Mizuno K., Ueda Y., Osada S., Hirai S., Takayanagi A., Shimizu N., Owada M. K., Nakajima H., Ohno S. Specificity of the high affinity interaction of protein kinase C with a physiological substrate, myristoylated alanine-rich protein kinase C substrate. J Biol Chem. 1994 Dec 16;269(50):31642–31648. [PubMed] [Google Scholar]
  13. Garcia R. C., Segal A. W. Phosphorylation of the subunits of cytochrome b-245 upon triggering of the respiratory burst of human neutrophils and macrophages. Biochem J. 1988 Jun 15;252(3):901–904. doi: 10.1042/bj2520901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gerisch G., Albrecht R., Heizer C., Hodgkinson S., Maniak M. Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein. Curr Biol. 1995 Nov 1;5(11):1280–1285. doi: 10.1016/s0960-9822(95)00254-5. [DOI] [PubMed] [Google Scholar]
  15. Grogan A., Reeves E., Keep N., Wientjes F., Totty N. F., Burlingame A. L., Hsuan J. J., Segal A. W. Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. J Cell Sci. 1997 Dec;110(Pt 24):3071–3081. doi: 10.1242/jcs.110.24.3071. [DOI] [PubMed] [Google Scholar]
  16. Hyatt S. L., Liao L., Aderem A., Nairn A. C., Jaken S. Correlation between protein kinase C binding proteins and substrates in REF52 cells. Cell Growth Differ. 1994 May;5(5):495–502. [PubMed] [Google Scholar]
  17. Jaken S. Protein kinase C isozymes and substrates. Curr Opin Cell Biol. 1996 Apr;8(2):168–173. doi: 10.1016/s0955-0674(96)80062-7. [DOI] [PubMed] [Google Scholar]
  18. Johnson J. L., Park J. W., Benna J. E., Faust L. P., Inanami O., Babior B. M. Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity. J Biol Chem. 1998 Dec 25;273(52):35147–35152. doi: 10.1074/jbc.273.52.35147. [DOI] [PubMed] [Google Scholar]
  19. Knaus U. G., Morris S., Dong H. J., Chernoff J., Bokoch G. M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science. 1995 Jul 14;269(5221):221–223. doi: 10.1126/science.7618083. [DOI] [PubMed] [Google Scholar]
  20. Kramer I. M., Verhoeven A. J., van der Bend R. L., Weening R. S., Roos D. Purified protein kinase C phosphorylates a 47-kDa protein in control neutrophil cytoplasts but not in neutrophil cytoplasts from patients with the autosomal form of chronic granulomatous disease. J Biol Chem. 1988 Feb 15;263(5):2352–2357. [PubMed] [Google Scholar]
  21. Lal A. S., Parker P. J., Segal A. W. Characterization and partial purification of a novel neutrophil membrane-associated kinase capable of phosphorylating the respiratory burst component p47phox. Biochem J. 1999 Mar 1;338(Pt 2):359–366. [PMC free article] [PubMed] [Google Scholar]
  22. Maniak M., Rauchenberger R., Albrecht R., Murphy J., Gerisch G. Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein Tag. Cell. 1995 Dec 15;83(6):915–924. doi: 10.1016/0092-8674(95)90207-4. [DOI] [PubMed] [Google Scholar]
  23. McPhail L. C., Qualliotine-Mann D., Waite K. A. Cell-free activation of neutrophil NADPH oxidase by a phosphatidic acid-regulated protein kinase. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7931–7935. doi: 10.1073/pnas.92.17.7931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mochly-Rosen D., Gordon A. S. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 1998 Jan;12(1):35–42. [PubMed] [Google Scholar]
  25. Morel F., Doussiere J., Vignais P. V. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem. 1991 Nov 1;201(3):523–546. doi: 10.1111/j.1432-1033.1991.tb16312.x. [DOI] [PubMed] [Google Scholar]
  26. Nauseef W. M., Volpp B. D., McCormick S., Leidal K. G., Clark R. A. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem. 1991 Mar 25;266(9):5911–5917. [PubMed] [Google Scholar]
  27. Segal A. W., Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993 Feb;18(2):43–47. doi: 10.1016/0968-0004(93)90051-n. [DOI] [PubMed] [Google Scholar]
  28. Segal A. W., Heyworth P. G., Cockcroft S., Barrowman M. M. Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature. 1985 Aug 8;316(6028):547–549. doi: 10.1038/316547a0. [DOI] [PubMed] [Google Scholar]
  29. Segal A. W., Jones O. T. Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett. 1980 Jan 28;110(1):111–114. doi: 10.1016/0014-5793(80)80035-4. [DOI] [PubMed] [Google Scholar]
  30. Segal A. W., Jones O. T. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature. 1978 Nov 30;276(5687):515–517. doi: 10.1038/276515a0. [DOI] [PubMed] [Google Scholar]
  31. Sumimoto H., Kage Y., Nunoi H., Sasaki H., Nose T., Fukumaki Y., Ohno M., Minakami S., Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5345–5349. doi: 10.1073/pnas.91.12.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Suzuki K., Nishihata J., Arai Y., Honma N., Yamamoto K., Irimura T., Toyoshima S. Molecular cloning of a novel actin-binding protein, p57, with a WD repeat and a leucine zipper motif. FEBS Lett. 1995 May 15;364(3):283–288. doi: 10.1016/0014-5793(95)00393-n. [DOI] [PubMed] [Google Scholar]
  33. Thrasher A. J., Keep N. H., Wientjes F., Segal A. W. Chronic granulomatous disease. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):1–24. doi: 10.1016/0925-4439(94)90100-7. [DOI] [PubMed] [Google Scholar]
  34. Wientjes F. B., Panayotou G., Reeves E., Segal A. W. Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox. Biochem J. 1996 Aug 1;317(Pt 3):919–924. doi: 10.1042/bj3170919. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES