Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):903–914.

Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Delta3-Delta2-enoyl-CoA isomerase in beta-oxidation of unsaturated fatty acids.

A Gurvitz 1, L Wabnegger 1, A I Yagi 1, M Binder 1, A Hartig 1, H Ruis 1, B Hamilton 1, I W Dawes 1, J K Hiltunen 1, H Rottensteiner 1
PMCID: PMC1220715  PMID: 10585880

Abstract

Human 2,4-dienoyl-CoA reductase (2,4-reductase; DECR) and rat monofunctional Delta(3)-Delta(2)-enoyl-CoA isomerase (rat 3, 2-isomerase; ECI) are thought to be mitochondrial auxiliary enzymes involved in the beta-oxidation of unsaturated fatty acids. However, their function during this process has not been demonstrated. Although they lack obvious peroxisomal targeting signals (PTSs), both proteins have been suggested previously to also occur in the mammalian peroxisomal compartment. The putative function and peroxisomal location of the two mammalian proteins can be examined in yeast, since beta-oxidation of unsaturated fatty acids is a compartmentalized process in Saccharomyces cerevisiae requiring peroxisomal 2,4-dienoyl-CoA reductase (Sps19p) and peroxisomal 3, 2-isomerase (Eci1p). A yeast sps19Delta mutant expressing human 2, 4-reductase ending with the native C-terminus could not grow on petroselinic acid [cis-C(18:1(6))] medium but could grow when the protein was extended with a PTS tripeptide, SKL (Ser-Lys-Leu). We therefore reason that the human protein is a physiological 2, 4-reductase but that it is probably not peroxisomal. Rat 3, 2-isomerase expressed in a yeast eci1Delta strain was able to re-establish growth on oleic acid [cis-C(18:1(9))] medium irrespective of an SKL extension. Since we had shown that Delta(2,4) double bonds could not be metabolized extra-peroxisomally to restore growth of the sps19Delta strain, we postulate that rat 3,2-isomerase acted on the Delta(3) unsaturated metabolite of oleic acid by replacing the mutant's missing activity from within the peroxisomes. Immunoblotting of fractionated yeast cells expressing rat 3, 2-isomerase in combination with electron microscopy supported our proposal that the protein functioned in peroxisomes. The results presented here shed new light on the function and location of human mitochondrial 2,4-reductase and rat monofunctional 3,2-isomerase.

Full Text

The Full Text of this article is available as a PDF (469.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartel P., Chien C. T., Sternglanz R., Fields S. Elimination of false positives that arise in using the two-hybrid system. Biotechniques. 1993 Jun;14(6):920–924. [PubMed] [Google Scholar]
  2. Brocard C., Kragler F., Simon M. M., Schuster T., Hartig A. The tetratricopeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1016–1022. doi: 10.1006/bbrc.1994.2564. [DOI] [PubMed] [Google Scholar]
  3. Brocard C., Lametschwandtner G., Koudelka R., Hartig A. Pex14p is a member of the protein linkage map of Pex5p. EMBO J. 1997 Sep 15;16(18):5491–5500. doi: 10.1093/emboj/16.18.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chevray P. M., Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5789–5793. doi: 10.1073/pnas.89.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coe J. G., Murray L. E., Kennedy C. J., Dawes I. W. Isolation and characterization of sporulation-specific promoters in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1992 Jan;6(1):75–81. doi: 10.1111/j.1365-2958.1992.tb00839.x. [DOI] [PubMed] [Google Scholar]
  6. Einerhand A. W., Kos W. T., Distel B., Tabak H. F. Characterization of a transcriptional control element involved in proliferation of peroxisomes in yeast in response to oleate. Eur J Biochem. 1993 May 15;214(1):323–331. doi: 10.1111/j.1432-1033.1993.tb17927.x. [DOI] [PubMed] [Google Scholar]
  7. Elgersma Y., Vos A., van den Berg M., van Roermund C. W., van der Sluijs P., Distel B., Tabak H. F. Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem. 1996 Oct 18;271(42):26375–26382. doi: 10.1074/jbc.271.42.26375. [DOI] [PubMed] [Google Scholar]
  8. Elgersma Y., Vos A., van den Berg M., van Roermund C. W., van der Sluijs P., Distel B., Tabak H. F. Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem. 1996 Oct 18;271(42):26375–26382. doi: 10.1074/jbc.271.42.26375. [DOI] [PubMed] [Google Scholar]
  9. Filipits M., Simon M. M., Rapatz W., Hamilton B., Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene. 1993 Sep 30;132(1):49–55. doi: 10.1016/0378-1119(93)90513-3. [DOI] [PubMed] [Google Scholar]
  10. Filppula S. A., Sormunen R. T., Hartig A., Kunau W. H., Hiltunen J. K. Changing stereochemistry for a metabolic pathway in vivo. Experiments with the peroxisomal beta-oxidation in yeast. J Biol Chem. 1995 Nov 17;270(46):27453–27457. doi: 10.1074/jbc.270.46.27453. [DOI] [PubMed] [Google Scholar]
  11. Filppula S. A., Yagi A. I., Kilpeläinen S. H., Novikov D., FitzPatrick D. R., Vihinen M., Valle D., Hiltunen J. K. Delta3,5-delta2,4-dienoyl-CoA isomerase from rat liver. Molecular characterization. J Biol Chem. 1998 Jan 2;273(1):349–355. doi: 10.1074/jbc.273.1.349. [DOI] [PubMed] [Google Scholar]
  12. Fransen M., Van Veldhoven P. P., Subramani S. Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase. Biochem J. 1999 Jun 1;340(Pt 2):561–568. [PMC free article] [PubMed] [Google Scholar]
  13. Geisbrecht B. V., Liang X., Morrell J. C., Schulz H., Gould S. J. The mouse gene PDCR encodes a peroxisomal delta(2), delta(4)-dienoyl-CoA reductase. J Biol Chem. 1999 Sep 3;274(36):25814–25820. doi: 10.1074/jbc.274.36.25814. [DOI] [PubMed] [Google Scholar]
  14. Geisbrecht B. V., Schulz K., Nau K., Geraghty M. T., Schulz H., Erdmann R., Gould S. J. Preliminary characterization of Yor180Cp: identification of a novel peroxisomal protein of saccharomyces cerevisiae involved in fatty acid metabolism. Biochem Biophys Res Commun. 1999 Jun 24;260(1):28–34. doi: 10.1006/bbrc.1999.0860. [DOI] [PubMed] [Google Scholar]
  15. Geisbrecht B. V., Zhang D., Schulz H., Gould S. J. Characterization of PECI, a novel monofunctional Delta(3), Delta(2)-enoyl-CoA isomerase of mammalian peroxisomes. J Biol Chem. 1999 Jul 30;274(31):21797–21803. doi: 10.1074/jbc.274.31.21797. [DOI] [PubMed] [Google Scholar]
  16. Geisbrecht B. V., Zhu D., Schulz K., Nau K., Morrell J. C., Geraghty M., Schulz H., Erdmann R., Gould S. J. Molecular characterization of Saccharomyces cerevisiae Delta3, Delta2-enoyl-CoA isomerase. J Biol Chem. 1998 Dec 11;273(50):33184–33191. doi: 10.1074/jbc.273.50.33184. [DOI] [PubMed] [Google Scholar]
  17. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  18. Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gould S. J., Keller G. A., Schneider M., Howell S. H., Garrard L. J., Goodman J. M., Distel B., Tabak H., Subramani S. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 1990 Jan;9(1):85–90. doi: 10.1002/j.1460-2075.1990.tb08083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gurvitz A., Mursula A. M., Firzinger A., Hamilton B., Kilpeläinen S. H., Hartig A., Ruis H., Hiltunen J. K., Rottensteiner H. Peroxisomal Delta3-cis-Delta2-trans-enoyl-CoA isomerase encoded by ECI1 is required for growth of the yeast Saccharomyces cerevisiae on unsaturated fatty acids. J Biol Chem. 1998 Nov 20;273(47):31366–31374. doi: 10.1074/jbc.273.47.31366. [DOI] [PubMed] [Google Scholar]
  21. Gurvitz A., Mursula A. M., Yagi A. I., Hartig A., Ruis H., Rottensteiner H., Hiltunen J. K. Alternatives to the isomerase-dependent pathway for the beta-oxidation of oleic acid are dispensable in Saccharomyces cerevisiae. Identification of YOR180c/DCI1 encoding peroxisomal delta(3,5)-delta(2,4)-dienoyl-CoA isomerase. J Biol Chem. 1999 Aug 27;274(35):24514–24521. doi: 10.1074/jbc.274.35.24514. [DOI] [PubMed] [Google Scholar]
  22. Gurvitz A., Rottensteiner H., Hiltunen J. K., Binder M., Dawes I. W., Ruis H., Hamilton B. Regulation of the yeast SPS19 gene encoding peroxisomal 2,4-dienoyl-CoA reductase by the transcription factors Pip2p and Oaf1p: beta-oxidation is dispensable for Saccharomyces cerevisiae sporulation in acetate medium. Mol Microbiol. 1997 Nov;26(4):675–685. doi: 10.1046/j.1365-2958.1997.5931969.x. [DOI] [PubMed] [Google Scholar]
  23. Gurvitz A., Rottensteiner H., Kilpeläinen S. H., Hartig A., Hiltunen J. K., Binder M., Dawes I. W., Hamilton B. The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19. J Biol Chem. 1997 Aug 29;272(35):22140–22147. doi: 10.1074/jbc.272.35.22140. [DOI] [PubMed] [Google Scholar]
  24. Hakkola E. H., Autio-Harmainen H. I., Sormunen R. T., Hassinen I. E., Hiltunen J. K. The known purified mammalian 2,4-dienoyl-CoA reductases are mitochondrial isoenzymes. J Histochem Cytochem. 1989 Dec;37(12):1863–1867. doi: 10.1177/37.12.2584694. [DOI] [PubMed] [Google Scholar]
  25. Hakkola E. H., Hiltunen J. K. The existence of two mitochondrial isoforms of 2,4-dienoyl-CoA reductase in the rat. Eur J Biochem. 1993 Jul 1;215(1):199–204. doi: 10.1111/j.1432-1033.1993.tb18023.x. [DOI] [PubMed] [Google Scholar]
  26. Hartig A., Ogris M., Cohen G., Binder M. Fate of highly expressed proteins destined to peroxisomes in Saccharomyces cerevisiae. Curr Genet. 1990 Jul;18(1):23–27. doi: 10.1007/BF00321111. [DOI] [PubMed] [Google Scholar]
  27. Helander H. M., Koivuranta K. T., Horelli-Kuitunen N., Palvimo J. J., Palotie A., Hiltunen J. K. Molecular cloning and characterization of the human mitochondrial 2,4-dienoyl-CoA reductase gene (DECR). Genomics. 1997 Nov 15;46(1):112–119. doi: 10.1006/geno.1997.5004. [DOI] [PubMed] [Google Scholar]
  28. Hiltunen J. K., Filppula S. A., Koivuranta K. T., Siivari K., Qin Y. M., Häyrinen H. M. Peroxisomal beta-oxidation and polyunsaturated fatty acids. Ann N Y Acad Sci. 1996 Dec 27;804:116–128. doi: 10.1111/j.1749-6632.1996.tb18612.x. [DOI] [PubMed] [Google Scholar]
  29. Hirose A., Kamijo K., Osumi T., Hashimoto T., Mizugaki M. cDNA cloning of rat liver 2,4-dienoyl-CoA reductase. Biochim Biophys Acta. 1990 Jul 30;1049(3):346–349. doi: 10.1016/0167-4781(90)90109-f. [DOI] [PubMed] [Google Scholar]
  30. Ishii N., Hijikata M., Osumi T., Hashimoto T. Structural organization of the gene for rat enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. J Biol Chem. 1987 Jun 15;262(17):8144–8150. [PubMed] [Google Scholar]
  31. Jones E. W. Proteinase mutants of Saccharomyces cerevisiae. Genetics. 1977 Jan;85(1):23–33. doi: 10.1093/genetics/85.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kimura M., Yamaguchi S. [2,4-Dienoyl-CoA reductase deficiency]. Ryoikibetsu Shokogun Shirizu. 1998;(18 Pt 1):411–413. [PubMed] [Google Scholar]
  33. Koivuranta K. T., Hakkola E. H., Hiltunen J. K. Isolation and characterization of cDNA for human 120 kDa mitochondrial 2,4-dienoyl-coenzyme A reductase. Biochem J. 1994 Dec 15;304(Pt 3):787–792. doi: 10.1042/bj3040787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kragler F., Langeder A., Raupachova J., Binder M., Hartig A. Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae. J Cell Biol. 1993 Feb;120(3):665–673. doi: 10.1083/jcb.120.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kunau W. H., Bühne S., de la Garza M., Kionka C., Mateblowski M., Schultz-Borchard U., Thieringer R. Comparative enzymology of beta-oxidation. Biochem Soc Trans. 1988 Jun;16(3):418–420. doi: 10.1042/bst0160418. [DOI] [PubMed] [Google Scholar]
  36. Kunau W. H., Dommes P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-4-decenoly-CoA by extracts of beef-liver mitochondria. Eur J Biochem. 1978 Nov 15;91(2):533–544. doi: 10.1111/j.1432-1033.1978.tb12707.x. [DOI] [PubMed] [Google Scholar]
  37. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  38. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Marzioch M., Erdmann R., Veenhuis M., Kunau W. H. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 1994 Oct 17;13(20):4908–4918. doi: 10.1002/j.1460-2075.1994.tb06818.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mizugaki M., Hirose A., Suzuki H., Miura K., Edo K., Tomioka Y. Subcellular distribution of rat liver NADPH-2,4-dienoyl-CoA reductase. Biol Pharm Bull. 1996 Feb;19(2):176–181. doi: 10.1248/bpb.19.176. [DOI] [PubMed] [Google Scholar]
  41. Naylor D. J., Hoogenraad N. J., Høj P. B. Characterisation of several Hsp70 interacting proteins from mammalian organelles. Biochim Biophys Acta. 1999 May 18;1431(2):443–450. doi: 10.1016/s0167-4838(99)00070-9. [DOI] [PubMed] [Google Scholar]
  42. Palosaari P. M., Hiltunen J. K. Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem. 1990 Feb 15;265(5):2446–2449. [PubMed] [Google Scholar]
  43. Palosaari P. M., Kilponen J. M., Sormunen R. T., Hassinen I. E., Hiltunen J. K. Delta 3,delta 2-enoyl-CoA isomerases. Characterization of the mitochondrial isoenzyme in the rat. J Biol Chem. 1990 Feb 25;265(6):3347–3353. [PubMed] [Google Scholar]
  44. Palosaari P. M., Vihinen M., Mäntsälä P. I., Alexson S. E., Pihlajaniemi T., Hiltunen J. K. Amino acid sequence similarities of the mitochondrial short chain delta 3, delta 2-enoyl-CoA isomerase and peroxisomal multifunctional delta 3, delta 2-enoyl-CoA isomerase, 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase enzyme in rat liver. The proposed occurrence of isomerization and hydration in the same catalytic domain of the multifunctional enzyme. J Biol Chem. 1991 Jun 15;266(17):10750–10753. [PubMed] [Google Scholar]
  45. Pfanner N., Pfaller R., Neupert W. How finicky is mitochondrial protein import? Trends Biochem Sci. 1988 May;13(5):165–167. doi: 10.1016/0968-0004(88)90140-5. [DOI] [PubMed] [Google Scholar]
  46. Roe C. R., Millington D. S., Norwood D. L., Kodo N., Sprecher H., Mohammed B. S., Nada M., Schulz H., McVie R. 2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation. J Clin Invest. 1990 May;85(5):1703–1707. doi: 10.1172/JCI114624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Subramani S. Protein translocation into peroxisomes. J Biol Chem. 1996 Dec 20;271(51):32483–32486. doi: 10.1074/jbc.271.51.32483. [DOI] [PubMed] [Google Scholar]
  48. Tomioka Y., Aihara K., Hirose A., Hishinuma T., Mizugaki M. Detection of heat-stable delta 3,delta 2-enoyl-CoA isomerase in rat liver mitochondria and peroxisomes by immunochemical study using specific antibody. J Biochem. 1991 Mar;109(3):394–398. doi: 10.1093/oxfordjournals.jbchem.a123392. [DOI] [PubMed] [Google Scholar]
  49. Van der Leij I., Franse M. M., Elgersma Y., Distel B., Tabak H. F. PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11782–11786. doi: 10.1073/pnas.90.24.11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Veenhuis M., Mateblowski M., Kunau W. H., Harder W. Proliferation of microbodies in Saccharomyces cerevisiae. Yeast. 1987 Jun;3(2):77–84. doi: 10.1002/yea.320030204. [DOI] [PubMed] [Google Scholar]
  51. Verleur N., Hettema E. H., van Roermund C. W., Tabak H. F., Wanders R. J. Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system. Eur J Biochem. 1997 Nov 1;249(3):657–661. doi: 10.1111/j.1432-1033.1997.00657.x. [DOI] [PubMed] [Google Scholar]
  52. Yokota S., Hirose A., Mizugaki M. Immunocytochemical localization of delta 3, delta 2-enoyl-CoA isomerase in rat liver. The effects of di-(2-ethylhexyl)phthalate, a peroxisome proliferator. Biol Cell. 1989;66(3):327–334. [PubMed] [Google Scholar]
  53. Yokota S., Tomioka Y., Suzuki H., Mizugaki M. Immunocytochemical localization of delta 3, delta 2-enoyl-CoA isomerase and NADPH-dependent-2,4-dienoyl-CoA reductase in rat kidney. Histochemistry. 1993 Jun;99(6):463–469. doi: 10.1007/BF00274099. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES