Abstract
Heparan sulphate proteoglycans and the extracellular matrix of bone-marrow-stromal cells are important components of the microenvironment of haematopoietic tissues and are involved in the interaction of haematopoietic stem and stromal cells. Previous studies have emphasized the role of heparan sulphate proteoglycan synthesis by bone-marrow-stromal cells. In the present study we describe the expression of glypican-4 (GPC-4), belonging to the glypican family, in bone-marrow-stromal cells and haematopoietic-progenitor cells of human and murine origin. Expression of GPC-4 was shown on the mRNA-level by reverse transcription-PCR and Northern blot analysis. Amplification products were cloned and sequenced, to confirm these results. To analyze the expression of GPC-4 on the protein level, polyclonal antibodies against selected peptides were raised in rabbits. Western blot analysis showed expression of GPC-4 as a heparan sulphate proteoglycan in the human haematopoietic-progenitor cell line TF-1 and normal human bone marrow. These results were confirmed by FACS analysis of TF-1 cells. Furthermore, GPC-4-positive progenitor cells and stromal cells were enriched from normal human bone marrow by magnetic-cell sorting and analysed by confocal laser-scanning microscopy.
Full Text
The Full Text of this article is available as a PDF (279.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Couchman J. R., Woods A. Syndecans, signaling, and cell adhesion. J Cell Biochem. 1996 Jun 15;61(4):578–584. doi: 10.1002/(sici)1097-4644(19960616)61:4<578::aid-jcb11>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
- David G. Integral membrane heparan sulfate proteoglycans. FASEB J. 1993 Aug;7(11):1023–1030. doi: 10.1096/fasebj.7.11.8370471. [DOI] [PubMed] [Google Scholar]
- David G., Lories V., Decock B., Marynen P., Cassiman J. J., Van den Berghe H. Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol. 1990 Dec;111(6 Pt 2):3165–3176. doi: 10.1083/jcb.111.6.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David G., van der Schueren B., Marynen P., Cassiman J. J., van den Berghe H. Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells. J Cell Biol. 1992 Aug;118(4):961–969. doi: 10.1083/jcb.118.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drzeniek Z., Siebertz B., Stöcker G., Just U., Ostertag W., Greiling H., Haubeck H. D. Proteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5. Biochem J. 1997 Oct 15;327(Pt 2):473–480. doi: 10.1042/bj3270473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drzeniek Z., Stöcker G., Siebertz B., Just U., Schroeder T., Ostertag W., Haubeck H. D. Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. Blood. 1999 May 1;93(9):2884–2897. [PubMed] [Google Scholar]
- Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
- Filmus J., Church J. G., Buick R. N. Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol. 1988 Oct;8(10):4243–4249. doi: 10.1128/mcb.8.10.4243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon M. Y., Riley G. P., Watt S. M., Greaves M. F. Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. 1987 Mar 26-Apr 1Nature. 326(6111):403–405. doi: 10.1038/326403a0. [DOI] [PubMed] [Google Scholar]
- Gupta P., McCarthy J. B., Verfaillie C. M. Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood. 1996 Apr 15;87(8):3229–3236. [PubMed] [Google Scholar]
- Hök M., Woods A., Johansson S., Kjellén L., Couchman J. R. Functions of proteoglycans at the cell surface. Ciba Found Symp. 1986;124:143–157. doi: 10.1002/9780470513385.ch9. [DOI] [PubMed] [Google Scholar]
- Iozzo R. V., Murdoch A. D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996 Apr;10(5):598–614. [PubMed] [Google Scholar]
- Itoh K., Friel J., Kluge N., Kina T., Kondo-Takaori A., Kawamata S., Uchiyama T., Ostertag W. A novel hematopoietic multilineage clone, Myl-D-7, is stromal cell-dependent and supported by an alternative mechanism(s) independent of stem cell factor/c-kit interaction. Blood. 1996 Apr 15;87(8):3218–3228. [PubMed] [Google Scholar]
- Itoh K., Sasaki R., Ono K., Tezuka H., Sakoda H., Sawada H., Hitomi K., Nakane H., Uchiyama T., Uchino H. Stromal cell-dependent growth of leukemic cells from murine erythroblastic leukemia. Jpn J Cancer Res. 1988 Aug;79(8):931–937. doi: 10.1111/j.1349-7006.1988.tb00057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh K., Tezuka H., Sakoda H., Konno M., Nagata K., Uchiyama T., Uchino H., Mori K. J. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol. 1989 Feb;17(2):145–153. [PubMed] [Google Scholar]
- Kirby S. L., Bentley S. A. Proteoglycan synthesis in two murine bone marrow stromal cell lines. Blood. 1987 Dec;70(6):1777–1783. [PubMed] [Google Scholar]
- Kitamura T., Tange T., Terasawa T., Chiba S., Kuwaki T., Miyagawa K., Piao Y. F., Miyazono K., Urabe A., Takaku F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989 Aug;140(2):323–334. doi: 10.1002/jcp.1041400219. [DOI] [PubMed] [Google Scholar]
- Kolset S. O., Gallagher J. T. Proteoglycans in haemopoietic cells. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):191–211. doi: 10.1016/0304-419x(90)90004-k. [DOI] [PubMed] [Google Scholar]
- Lories V., Cassiman J. J., Van den Berghe H., David G. Multiple distinct membrane heparan sulfate proteoglycans in human lung fibroblasts. J Biol Chem. 1989 Apr 25;264(12):7009–7016. [PubMed] [Google Scholar]
- Luikart S. D., Maniglia C. A., Furcht L. T., McCarthy J. B., Oegema T. R., Jr A heparan sulfate-containing fraction of bone marrow stroma induces maturation of HL-60 cells in vitro. Cancer Res. 1990 Jun 15;50(12):3781–3785. [PubMed] [Google Scholar]
- Martin P., Papayannopoulou T. HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science. 1982 Jun 11;216(4551):1233–1235. doi: 10.1126/science.6177045. [DOI] [PubMed] [Google Scholar]
- Minguell J. J., Hardy C., Tavassoli M. Membrane-associated chondroitin sulfate proteoglycan and fibronectin mediate the binding of hemopoietic progenitor cells to stromal cells. Exp Cell Res. 1992 Jul;201(1):200–207. doi: 10.1016/0014-4827(92)90364-e. [DOI] [PubMed] [Google Scholar]
- Minguell J. J., Tavassoli M. Proteoglycan synthesis by hematopoietic progenitor cells. Blood. 1989 May 15;73(7):1821–1827. [PubMed] [Google Scholar]
- Morris A. J., Dexter T. M., Gallagher J. T. Metabolic properties of a homogeneous proteoglycan of a haemopoietic stem cell line, FDCP-mix. Biochem J. 1989 Jun 1;260(2):479–486. doi: 10.1042/bj2600479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris A. J., Turnbull J. E., Riley G. P., Gordon M. Y., Gallagher J. T. Production of heparan sulphate proteoglycans by human bone marrow stromal cells. J Cell Sci. 1991 May;99(Pt 1):149–156. doi: 10.1242/jcs.99.1.149. [DOI] [PubMed] [Google Scholar]
- Motani A., Rutherford C., Anggard E. E., Ferns G. A. Insulin-like growth factor binding protein-1 inhibits arterial smooth muscle cell proliferation in vitro but does not reduce the neointimal response to balloon catheter injury. Atherosclerosis. 1995 Nov;118(1):57–66. doi: 10.1016/0021-9150(95)05593-l. [DOI] [PubMed] [Google Scholar]
- Oh E. S., Woods A., Couchman J. R. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J Biol Chem. 1997 Mar 28;272(13):8133–8136. doi: 10.1074/jbc.272.13.8133. [DOI] [PubMed] [Google Scholar]
- Pilia G., Hughes-Benzie R. M., MacKenzie A., Baybayan P., Chen E. Y., Huber R., Neri G., Cao A., Forabosco A., Schlessinger D. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996 Mar;12(3):241–247. doi: 10.1038/ng0396-241. [DOI] [PubMed] [Google Scholar]
- Roberts R., Gallagher J., Spooncer E., Allen T. D., Bloomfield F., Dexter T. M. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature. 1988 Mar 24;332(6162):376–378. doi: 10.1038/332376a0. [DOI] [PubMed] [Google Scholar]
- Salmivirta M., Jalkanen M. Syndecan family of cell surface proteoglycans: developmentally regulated receptors for extracellular effector molecules. Experientia. 1995 Sep 29;51(9-10):863–872. doi: 10.1007/BF01921737. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirota T., Minguell J. J., Tavassoli M. Expression of chondroitin sulfate as a unique type of proteoglycan on the cell membrane of multipotential and committed hemopoietic progenitor cells. Biochim Biophys Acta. 1992 Jul 22;1136(1):17–22. doi: 10.1016/0167-4889(92)90079-q. [DOI] [PubMed] [Google Scholar]
- Siczkowski M., Clarke D., Gordon M. Y. Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood. 1992 Aug 15;80(4):912–919. [PubMed] [Google Scholar]
- Siczkowski M., Robertson D., Gordon M. Y. Synthesis and deposition of glycosaminoglycans in the murine hemopoietic stromal line S17: modulators of the hemopoietic microenvironment. Exp Hematol. 1992 Dec;20(11):1285–1290. [PubMed] [Google Scholar]
- Spooncer E., Heyworth C. M., Dunn A., Dexter T. M. Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation. 1986;31(2):111–118. doi: 10.1111/j.1432-0436.1986.tb00391.x. [DOI] [PubMed] [Google Scholar]
- Stipp C. S., Litwack E. D., Lander A. D. Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed specifically during neuronal differentiation. J Cell Biol. 1994 Jan;124(1-2):149–160. doi: 10.1083/jcb.124.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stöcker G., Drzeniek Z., Just U., Ostertag W., Siebertz B., Greiling H., Haubeck H. D. Proteoglycan synthesis in human and murine haematopoietic progenitor cell lines: isolation and characterization of a heparan sulphate proteoglycan as a major proteoglycan from the human haematopoietic cell line TF-1. Biochem J. 1996 Jul 1;317(Pt 1):203–212. doi: 10.1042/bj3170203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udenfriend S., Kodukula K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem. 1995;64:563–591. doi: 10.1146/annurev.bi.64.070195.003023. [DOI] [PubMed] [Google Scholar]
- Veugelers M., Vermeesch J., Reekmans G., Steinfeld R., Marynen P., David G. Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family. Genomics. 1997 Feb 15;40(1):24–30. doi: 10.1006/geno.1996.4518. [DOI] [PubMed] [Google Scholar]
- Veugelers M., Vermeesch J., Watanabe K., Yamaguchi Y., Marynen P., David G. GPC4, the gene for human K-glypican, flanks GPC3 on xq26: deletion of the GPC3-GPC4 gene cluster in one family with Simpson-Golabi-Behmel syndrome. Genomics. 1998 Oct 1;53(1):1–11. doi: 10.1006/geno.1998.5465. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Yamada H., Yamaguchi Y. K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. J Cell Biol. 1995 Sep;130(5):1207–1218. doi: 10.1083/jcb.130.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N., Kinsella M. G., Keating A., Singer J. W. Proteoglycans in human long-term bone marrow cultures: biochemical and ultrastructural analyses. Blood. 1986 May;67(5):1333–1343. [PubMed] [Google Scholar]
- Yanagishita M., Hascall V. C. Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992 May 15;267(14):9451–9454. [PubMed] [Google Scholar]
