Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):945–951.

Acetylcholinesterase from Schistosoma mansoni: interaction of globular species with heparin.

R Tarrab-Hazdai 1, L Toker 1, I Silman 1, R Arnon 1
PMCID: PMC1220720  PMID: 10585885

Abstract

In the cercarial and schistosomal stages of the life cycle of the trematode Schistosoma mansoni, acetylcholinesterase occurs as two principal molecular forms (both globular), present in approximately equal amounts, with sedimentation coefficients of 6.5 S and 8 S. The 6.5 S form is solubilized by bacterial phosphatidylinositol-specific phospholipase C from intact schistosomula. It is thus located on the outer surface of the schistosomal tegument and is most probably analogous to the glycosylphosphatidylinositol-anchored G(2) form of acetylcholinesterase found in the electric organ of Torpedo, on the surface of mammalian erythrocytes, and elsewhere. Both forms are fully solubilized by the non-ionic detergent Triton X-100. Upon passing such a detergent extract over a heparin-Sepharose column, only the 8 S form was retained on the column. The bound acetylcholinesterase could be progressively eluted by increasing the salt concentration, with approx. 0.5-0.6 M NaCl being needed for complete elution. Selective inhibition experiments carried out on live parasites using the covalent acetylcholinesterase inhibitor echothiophate (phospholine), which does not penetrate the tegument, selectively inhibited the 6.5 S form, but not the 8 S form, suggesting an internal location for the latter. Monoclonal antibodies raised against S. mansoni acetylcholinesterase also distinguished between the two forms. Thus monoclonal antibody SA7 bound the 6.5 S form selectively, whereas SA57 recognized the 8 S form. The selective binding of the 8 S form to heparin suggests that, within the parasite, this form may be associated with the extracellular matrix of the musculature.

Full Text

The Full Text of this article is available as a PDF (143.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anglister L., Haesaert B., McMahan U. J. Globular and asymmetric acetylcholinesterase in the synaptic basal lamina of skeletal muscle. J Cell Biol. 1994 Apr;125(1):183–196. doi: 10.1083/jcb.125.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUEDING E. Acetylcholinesterase activity of Schistosoma mansoni. Br J Pharmacol Chemother. 1952 Dec;7(4):563–566. doi: 10.1111/j.1476-5381.1952.tb00722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker L. R., Bueding E., Timms A. R. The possible role of acetylcholine in Schistosoma mansoni. Br J Pharmacol Chemother. 1966 Mar;26(3):656–665. doi: 10.1111/j.1476-5381.1966.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Botti S. A., Felder C. E., Sussman J. L., Silman I. Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. Protein Eng. 1998 Jun;11(6):415–420. doi: 10.1093/protein/11.6.415. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Brandan E., Inestrosa N. C. Binding of the asymmetric forms of acetylcholinesterase to heparin. Biochem J. 1984 Jul 15;221(2):415–422. doi: 10.1042/bj2210415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
  8. Camacho M., Agnew A. Schistosoma: rate of glucose import is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol. 1995 Dec;81(4):584–591. doi: 10.1006/expr.1995.1152. [DOI] [PubMed] [Google Scholar]
  9. Camacho M., Alsford S., Jones A., Agnew A. Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol. 1995 Apr;71(1):127–134. doi: 10.1016/0166-6851(94)00039-p. [DOI] [PubMed] [Google Scholar]
  10. Camacho M., Tarrab-Hazdai R., Espinoza B., Arnon R., Agnew A. The amount of acetylcholinesterase on the parasite surface reflects the differential sensitivity of schistosome species to metrifonate. Parasitology. 1994 Feb;108(Pt 2):153–160. doi: 10.1017/s0031182000068244. [DOI] [PubMed] [Google Scholar]
  11. Casanueva O. I., García-Huidobro T., Campos E. O., Aldunate R., Garrido J., Inestrosa N. C. A major portion of synaptic basal lamina acetylcholinesterase is detached by high salt- and heparin-containing buffers from rat diaphragm muscle and Torpedo electric organ. J Biol Chem. 1998 Feb 13;273(7):4258–4265. doi: 10.1074/jbc.273.7.4258. [DOI] [PubMed] [Google Scholar]
  12. Day T. A., Maule A. G., Shaw C., Halton D. W., Moore S., Bennett J. L., Pax R. A. Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro. Parasitology. 1994 Nov;109(Pt 4):455–459. doi: 10.1017/s0031182000080707. [DOI] [PubMed] [Google Scholar]
  13. Deprez P. N., Inestrosa N. C. Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase. J Biol Chem. 1995 May 12;270(19):11043–11046. doi: 10.1074/jbc.270.19.11043. [DOI] [PubMed] [Google Scholar]
  14. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  15. Espinoza B., Parizade M., Ortega E., Tarrab-Hazdai R., Zilberg D., Arnon R. Monoclonal antibodies against acetylcholinesterase of Schistosoma mansoni: production and characterization. Hybridoma. 1995 Dec;14(6):577–586. doi: 10.1089/hyb.1995.14.577. [DOI] [PubMed] [Google Scholar]
  16. Espinoza B., Silman I., Arnon R., Tarrab-Hazdai R. Phosphatidylinositol-specific phospholipase C induces biosynthesis of acetylcholinesterase via diacylglycerol in Schistosoma mansoni. Eur J Biochem. 1991 Feb 14;195(3):863–870. doi: 10.1111/j.1432-1033.1991.tb15776.x. [DOI] [PubMed] [Google Scholar]
  17. Espinoza B., Tarrab-Hazdai R., Himmeloch S., Arnon R. Acetylcholinesterase from Schistosoma mansoni: immunological characterization. Immunol Lett. 1991 May;28(2):167–174. doi: 10.1016/0165-2478(91)90116-r. [DOI] [PubMed] [Google Scholar]
  18. Espinoza B., Tarrab-Hazdai R., Silman I., Arnon R. Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Mol Biochem Parasitol. 1988 Jun;29(2-3):171–179. doi: 10.1016/0166-6851(88)90072-2. [DOI] [PubMed] [Google Scholar]
  19. Ferguson M. A. The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci. 1997 Sep 29;352(1359):1295–1302. doi: 10.1098/rstb.1997.0113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hall Z. W. Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurobiol. 1973;4(4):343–361. doi: 10.1002/neu.480040404. [DOI] [PubMed] [Google Scholar]
  21. Inestrosa N. C., Perelman A. Association of acetylcholinesterase with the cell surface. J Membr Biol. 1990 Oct;118(1):1–9. doi: 10.1007/BF01872200. [DOI] [PubMed] [Google Scholar]
  22. Inestrosa N. C., Silberstein L., Hall Z. W. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell. 1982 May;29(1):71–79. doi: 10.1016/0092-8674(82)90091-5. [DOI] [PubMed] [Google Scholar]
  23. Johnson C. D., Russell R. L. A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem. 1975 Mar;64(1):229–238. doi: 10.1016/0003-2697(75)90423-6. [DOI] [PubMed] [Google Scholar]
  24. Layer P. G., Willbold E. Cholinesterases in avian neurogenesis. Int Rev Cytol. 1994;151:139–181. doi: 10.1016/s0074-7696(08)62632-7. [DOI] [PubMed] [Google Scholar]
  25. Levi-Schaffer F., Tarrab-Hazdai R., Meshulam H., Arnon R. Effect of phosphonium salts and phosphoranes on the acetylcholinesterase activity and on the viability of Schistosoma mansoni parasites. Int J Immunopharmacol. 1984;6(6):619–627. doi: 10.1016/0192-0561(84)90073-0. [DOI] [PubMed] [Google Scholar]
  26. Levi-Schaffer F., Tarrab-Hazdai R., Schryer M. D., Arnon R., Smolarsky M. Isolation and partial characterization of the tegumental outer membrane of schistosomula of Schistosoma mansoni. Mol Biochem Parasitol. 1984 Nov;13(3):283–300. doi: 10.1016/0166-6851(84)90120-8. [DOI] [PubMed] [Google Scholar]
  27. Lyles J. M., Silman I., Barnard E. A. Developmental changes in levels and forms of cholinesterases in muscles of normal and dystrophic chickens. J Neurochem. 1979 Sep;33(3):727–738. doi: 10.1111/j.1471-4159.1979.tb05218.x. [DOI] [PubMed] [Google Scholar]
  28. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  29. Mehlert A., Varon L., Silman I., Homans S. W., Ferguson M. A. Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric-fish, Torpedo californica. Biochem J. 1993 Dec 1;296(Pt 2):473–479. doi: 10.1042/bj2960473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pax R. A., Bennett J. L. Neurobiology of parasitic platyhelminths: possible solutions to the problems of correlating structure with function. Parasitology. 1991;102 (Suppl):S31–S39. doi: 10.1017/s0031182000073273. [DOI] [PubMed] [Google Scholar]
  31. Pierce S. K., Klinman N. R. Allogeneic carrier-specific enhancement of hapten-specific secondary B-cell responses. J Exp Med. 1976 Nov 2;144(5):1254–1262. doi: 10.1084/jem.144.5.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ramalho-Pinto F. J., McLaren D. J., Smithers S. R. Complement-mediated killing of schistosomula of Schistosoma mansoni by rat eosinophils in vitro. J Exp Med. 1978 Jan 1;147(1):147–156. doi: 10.1084/jem.147.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ramírez G., Barat A., Fernández H. L. Interaction of asymmetric and globular acetylcholinesterase species with glycosaminoglycans. J Neurochem. 1990 May;54(5):1761–1768. doi: 10.1111/j.1471-4159.1990.tb01231.x. [DOI] [PubMed] [Google Scholar]
  34. Silman I., Futerman A. H. Modes of attachment of acetylcholinesterase to the surface membrane. Eur J Biochem. 1987 Dec 30;170(1-2):11–22. doi: 10.1111/j.1432-1033.1987.tb13662.x. [DOI] [PubMed] [Google Scholar]
  35. Silman I., Lyles J. M., Barnard E. A. Intrinsic forms of acetylcholinesterase in skeletal muscle. FEBS Lett. 1978 Oct 1;94(1):166–170. doi: 10.1016/0014-5793(78)80929-6. [DOI] [PubMed] [Google Scholar]
  36. Sine J. P., Toutant J. P., Colas B. Butyrylcholinesterase amphiphilic forms of the mucosal cells of rat intestine bind heparin. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1376–1381. doi: 10.1006/bbrc.1994.1855. [DOI] [PubMed] [Google Scholar]
  37. Talesa V., Grauso M., Giovannini E., Rosi G., Toutant J. P. Solubilization, molecular forms, purification and substrate specificity of two acetylcholinesterases in the medicinal leech (Hirudo medicinalis). Biochem J. 1995 Mar 15;306(Pt 3):687–692. doi: 10.1042/bj3060687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tarrab-Hazdai R., Levi-Schaffer F., Gonzales G., Arnon R. Acetylcholinesterase of Schistosoma mansoni. Molecular forms of the solubilized enzyme. Biochim Biophys Acta. 1984 Oct 9;790(1):61–69. doi: 10.1016/0167-4838(84)90332-7. [DOI] [PubMed] [Google Scholar]
  39. Tarrab-Hazdai R., Levi-Schaffer F., Smolarsky M., Arnon R. Acetylcholinesterase of Schistosoma mansoni: antigenic cross-reactivity with Electrophorus electricus and its functional implications. Eur J Immunol. 1984 Mar;14(3):205–209. doi: 10.1002/eji.1830140302. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES