Abstract
The dicarboxylate carrier (DIC) is a nuclear-encoded protein located in the mitochondrial inner membrane. It catalyses the transport of dicarboxylates such as malate and succinate across the mitochondrial membrane in exchange for phosphate, sulphate and thiosulphate. We have determined the sequences of the human cDNA and gene for the DIC. The gene sequence was established from overlapping genomic clones generated by PCRs by use of primers and probes based upon the human cDNA sequence. It is spread over 8.6 kb of human DNA and is divided into 11 exons. Five short interspersed repetitive Alu sequences are found in intron I. The protein encoded by the gene is 287 amino acids long. In common with the rat protein, it does not have a processed presequence to help to target it into mitochondria. It has been demonstrated by Northern- and Western-blot analyses that the DIC is present in high amounts in liver and kidney, and at lower levels in all the other tissues analysed. The positions of introns contribute towards an understanding of the processes involved in the evolution of human genes for carrier proteins.
Full Text
The Full Text of this article is available as a PDF (497.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bisaccia F., Indiveri C., Palmieri F. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Biochim Biophys Acta. 1988 Apr 22;933(2):229–240. doi: 10.1016/0005-2728(88)90030-8. [DOI] [PubMed] [Google Scholar]
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Capobianco L., Bisaccia F., Mazzeo M., Palmieri F. The mitochondrial oxoglutarate carrier: sulfhydryl reagents bind to cysteine-184, and this interaction is enhanced by substrate binding. Biochemistry. 1996 Jul 9;35(27):8974–8980. doi: 10.1021/bi960258v. [DOI] [PubMed] [Google Scholar]
- Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
- Cozens A. L., Runswick M. J., Walker J. E. DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J Mol Biol. 1989 Mar 20;206(2):261–280. doi: 10.1016/0022-2836(89)90477-4. [DOI] [PubMed] [Google Scholar]
- Crompton M., Palmieri F., Capano M., Quagliariello E. The transport of sulphate and sulphite in rat liver mitochondria. Biochem J. 1974 Jul;142(1):127–137. doi: 10.1042/bj1420127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton M., Palmieri F., Capano M., Quagliariello E. The transport of thiosulphate in rat liver mitochondria. FEBS Lett. 1974 Sep 15;46(1):247–250. doi: 10.1016/0014-5793(74)80379-0. [DOI] [PubMed] [Google Scholar]
- Deininger P. L., Jolly D. J., Rubin C. M., Friedmann T., Schmid C. W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981 Sep 5;151(1):17–33. doi: 10.1016/0022-2836(81)90219-9. [DOI] [PubMed] [Google Scholar]
- Dolce V., Fiermonte G., Palmieri F. Tissue-specific expression of the two isoforms of the mitochondrial phosphate carrier in bovine tissues. FEBS Lett. 1996 Dec 9;399(1-2):95–98. doi: 10.1016/s0014-5793(96)01294-x. [DOI] [PubMed] [Google Scholar]
- Dolce V., Iacobazzi V., Palmieri F., Walker J. E. The sequences of human and bovine genes of the phosphate carrier from mitochondria contain evidence of alternatively spliced forms. J Biol Chem. 1994 Apr 8;269(14):10451–10460. [PubMed] [Google Scholar]
- Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiermonte G., Palmieri L., Dolce V., Lasorsa F. M., Palmieri F., Runswick M. J., Walker J. E. The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J Biol Chem. 1998 Sep 18;273(38):24754–24759. doi: 10.1074/jbc.273.38.24754. [DOI] [PubMed] [Google Scholar]
- Iacobazzi V., Lauria G., Palmieri F. Organization and sequence of the human gene for the mitochondrial citrate transport protein. DNA Seq. 1997;7(3-4):127–139. doi: 10.3109/10425179709034029. [DOI] [PubMed] [Google Scholar]
- Iacobazzi V., Naglieri M. A., Stanley C. A., Wanders R. J., Palmieri F. The structure and organization of the human carnitine/acylcarnitine translocase (CACT1) gene2. Biochem Biophys Res Commun. 1998 Nov 27;252(3):770–774. doi: 10.1006/bbrc.1998.9738. [DOI] [PubMed] [Google Scholar]
- Iacobazzi V., Palmieri F., Runswick M. J., Walker J. E. Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carrier. DNA Seq. 1992;3(2):79–88. doi: 10.3109/10425179209034000. [DOI] [PubMed] [Google Scholar]
- Indiveri C., Prezioso G., Dierks T., Krämer R., Palmieri F. Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system. Biochim Biophys Acta. 1993 Jul 26;1143(3):310–318. doi: 10.1016/0005-2728(93)90202-q. [DOI] [PubMed] [Google Scholar]
- Kao F. T. Human genome structure. Int Rev Cytol. 1985;96:51–88. doi: 10.1016/s0074-7696(08)60594-x. [DOI] [PubMed] [Google Scholar]
- Klingenberg M., Palmieri F., Quagliariello E. Quantitative correlation between the distribution of anions and the pH difference across the mitochondrial membrane. Eur J Biochem. 1970 Dec;17(2):230–238. doi: 10.1111/j.1432-1033.1970.tb01158.x. [DOI] [PubMed] [Google Scholar]
- Kozak L. P., Britton J. H., Kozak U. C., Wells J. M. The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. J Biol Chem. 1988 Sep 5;263(25):12274–12277. [PubMed] [Google Scholar]
- Kuan J., Saier M. H., Jr The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol. 1993;28(3):209–233. doi: 10.3109/10409239309086795. [DOI] [PubMed] [Google Scholar]
- Lançar-Benba J., Foucher B., Saint-Macary M. Characterization, purification and properties of the yeast mitochondrial dicarboxylate carrier (Saccharomyces cerevisiae). Biochimie. 1996;78(3):195–200. doi: 10.1016/0300-9084(96)89505-8. [DOI] [PubMed] [Google Scholar]
- Lançar-Benba J., Foucher B., Saint-Macary M. Purification of the rat-liver mitochondrial dicarboxylate carrier by affinity chromatography on immobilized malate dehydrogenase. Biochim Biophys Acta. 1994 Mar 23;1190(2):213–216. doi: 10.1016/0005-2736(94)90076-0. [DOI] [PubMed] [Google Scholar]
- McGivan J. D., Klingenberg M. Correlation between H+ and anion movement in mitochondria and the key role of the phosphate carrier. Eur J Biochem. 1971 Jun 11;20(3):392–399. doi: 10.1111/j.1432-1033.1971.tb01405.x. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Groot G. S.P., Tager J. M. Effect of sulphydryl-blocking reagents on mitochondrial anion-exchange reactions involving phosphate. FEBS Lett. 1970 May 11;8(1):41–44. doi: 10.1016/0014-5793(70)80220-4. [DOI] [PubMed] [Google Scholar]
- Ness G. C., Pendleton L. C. Thyroid hormone increases glyceraldehyde 3-phosphate dehydrogenase gene expression in rat liver. FEBS Lett. 1991 Aug 19;288(1-2):21–22. doi: 10.1016/0014-5793(91)80993-d. [DOI] [PubMed] [Google Scholar]
- Palmieri F. Mitochondrial carrier proteins. FEBS Lett. 1994 Jun 6;346(1):48–54. doi: 10.1016/0014-5793(94)00329-7. [DOI] [PubMed] [Google Scholar]
- Palmieri F., Prezioso G., Quagliariello E., Klingenberg M. Kinetic study of the dicarboxylate carrier in rat liver mitochondria. Eur J Biochem. 1971 Sep 13;22(1):66–74. doi: 10.1111/j.1432-1033.1971.tb01515.x. [DOI] [PubMed] [Google Scholar]
- Pannone E., Fiermonte G., Dolce V., Rocchi M., Palmieri F. Assignment of the human dicarboxylate carrier gene (DIC) to chromosome 17 band 17q25.3. Cytogenet Cell Genet. 1998;83(3-4):238–239. doi: 10.1159/000015190. [DOI] [PubMed] [Google Scholar]
- Passarella S., Palmieri F., Quagliariello E. The role of metal ions in the transport of substrates in mitochondria. FEBS Lett. 1973 Dec 15;38(1):91–95. doi: 10.1016/0014-5793(73)80521-6. [DOI] [PubMed] [Google Scholar]
- Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
- Rogers J. H. The origin and evolution of retroposons. Int Rev Cytol. 1985;93:187–279. doi: 10.1016/s0074-7696(08)61375-3. [DOI] [PubMed] [Google Scholar]
- Saraste M., Walker J. E. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 1982 Aug 2;144(2):250–254. doi: 10.1016/0014-5793(82)80648-0. [DOI] [PubMed] [Google Scholar]
- Sluse Francis E., Meijer Alfred J., Tager Joseph M. Anion translocators in rat-heart mitochondria. FEBS Lett. 1971 Oct 15;18(1):149–153. doi: 10.1016/0014-5793(71)80432-5. [DOI] [PubMed] [Google Scholar]
- Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]