Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 1;345(Pt 1):1–15.

The proteasome activator 11 S REG (PA28) and class I antigen presentation.

M Rechsteiner 1, C Realini 1, V Ustrell 1
PMCID: PMC1220724  PMID: 10600633

Abstract

There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen presentation. In the present review we focus on the structural properties of REG molecules and on the evidence that REGalpha/beta functions in the Class I immune response.

Full Text

The Full Text of this article is available as a PDF (538.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn J. Y., Tanahashi N., Akiyama K., Hisamatsu H., Noda C., Tanaka K., Chung C. H., Shibmara N., Willy P. J., Mott J. D. Primary structures of two homologous subunits of PA28, a gamma-interferon-inducible protein activator of the 20S proteasome. FEBS Lett. 1995 Jun 5;366(1):37–42. doi: 10.1016/0014-5793(95)00492-r. [DOI] [PubMed] [Google Scholar]
  2. Ahn K., Erlander M., Leturcq D., Peterson P. A., Früh K., Yang Y. In vivo characterization of the proteasome regulator PA28. J Biol Chem. 1996 Jul 26;271(30):18237–18242. doi: 10.1074/jbc.271.30.18237. [DOI] [PubMed] [Google Scholar]
  3. Aki M., Shimbara N., Takashina M., Akiyama K., Kagawa S., Tamura T., Tanahashi N., Yoshimura T., Tanaka K., Ichihara A. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem. 1994 Feb;115(2):257–269. doi: 10.1093/oxfordjournals.jbchem.a124327. [DOI] [PubMed] [Google Scholar]
  4. Akiyama K., Yokota K., Kagawa S., Shimbara N., Tamura T., Akioka H., Nothwang H. G., Noda C., Tanaka K., Ichihara A. cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science. 1994 Aug 26;265(5176):1231–1234. doi: 10.1126/science.8066462. [DOI] [PubMed] [Google Scholar]
  5. Antón L. C., Snyder H. L., Bennink J. R., Vinitsky A., Orlowski M., Porgador A., Yewdell J. W. Dissociation of proteasomal degradation of biosynthesized viral proteins from generation of MHC class I-associated antigenic peptides. J Immunol. 1998 May 15;160(10):4859–4868. [PubMed] [Google Scholar]
  6. Arendt C. S., Hochstrasser M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7156–7161. doi: 10.1073/pnas.94.14.7156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baumeister W., Walz J., Zühl F., Seemüller E. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 1998 Feb 6;92(3):367–380. doi: 10.1016/s0092-8674(00)80929-0. [DOI] [PubMed] [Google Scholar]
  8. Belich M. P., Glynne R. J., Senger G., Sheer D., Trowsdale J. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol. 1994 Sep 1;4(9):769–776. doi: 10.1016/s0960-9822(00)00174-3. [DOI] [PubMed] [Google Scholar]
  9. Berke G. The CTL's kiss of death. Cell. 1995 Apr 7;81(1):9–12. doi: 10.1016/0092-8674(95)90365-8. [DOI] [PubMed] [Google Scholar]
  10. Blachere N. E., Li Z., Chandawarkar R. Y., Suto R., Jaikaria N. S., Basu S., Udono H., Srivastava P. K. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med. 1997 Oct 20;186(8):1315–1322. doi: 10.1084/jem.186.8.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Boehm U., Klamp T., Groot M., Howard J. C. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–795. doi: 10.1146/annurev.immunol.15.1.749. [DOI] [PubMed] [Google Scholar]
  12. Boes B., Hengel H., Ruppert T., Multhaup G., Koszinowski U. H., Kloetzel P. M. Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med. 1994 Mar 1;179(3):901–909. doi: 10.1084/jem.179.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cerundolo V., Benham A., Braud V., Mukherjee S., Gould K., Macino B., Neefjes J., Townsend A. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur J Immunol. 1997 Jan;27(1):336–341. doi: 10.1002/eji.1830270148. [DOI] [PubMed] [Google Scholar]
  14. Chen P., Hochstrasser M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell. 1996 Sep 20;86(6):961–972. doi: 10.1016/s0092-8674(00)80171-3. [DOI] [PubMed] [Google Scholar]
  15. Ciechanover A., Schwartz A. L. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2727–2730. doi: 10.1073/pnas.95.6.2727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  17. Craiu A., Akopian T., Goldberg A., Rock K. L. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10850–10855. doi: 10.1073/pnas.94.20.10850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dahlmann B., Kuehn L., Grziwa A., Zwickl P., Baumeister W. Biochemical properties of the proteasome from Thermoplasma acidophilum. Eur J Biochem. 1992 Sep 15;208(3):789–797. doi: 10.1111/j.1432-1033.1992.tb17249.x. [DOI] [PubMed] [Google Scholar]
  19. DeMarini D. J., Papa F. R., Swaminathan S., Ursic D., Rasmussen T. P., Culbertson M. R., Hochstrasser M. The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol Cell Biol. 1995 Nov;15(11):6311–6321. doi: 10.1128/mcb.15.11.6311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. DeMartino G. N., Moomaw C. R., Zagnitko O. P., Proske R. J., Chu-Ping M., Afendis S. J., Swaffield J. C., Slaughter C. A. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J Biol Chem. 1994 Aug 19;269(33):20878–20884. [PubMed] [Google Scholar]
  21. Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994 Mar 11;269(10):7059–7061. [PubMed] [Google Scholar]
  22. Di Cola D. Human erythrocyte contains a factor that stimulates the peptidase activities of multicatalytic proteinase complex. Ital J Biochem. 1992 Jul-Aug;41(4):213–224. [PubMed] [Google Scholar]
  23. Dick T. P., Nussbaum A. K., Deeg M., Heinemeyer W., Groll M., Schirle M., Keilholz W., Stevanović S., Wolf D. H., Huber R. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem. 1998 Oct 2;273(40):25637–25646. doi: 10.1074/jbc.273.40.25637. [DOI] [PubMed] [Google Scholar]
  24. Dick T. P., Ruppert T., Groettrup M., Kloetzel P. M., Kuehn L., Koszinowski U. H., Stevanović S., Schild H., Rammensee H. G. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell. 1996 Jul 26;86(2):253–262. doi: 10.1016/s0092-8674(00)80097-5. [DOI] [PubMed] [Google Scholar]
  25. Dolenc I., Seemüller E., Baumeister W. Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett. 1998 Sep 4;434(3):357–361. doi: 10.1016/s0014-5793(98)01010-2. [DOI] [PubMed] [Google Scholar]
  26. Driscoll J., Brown M. G., Finley D., Monaco J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature. 1993 Sep 16;365(6443):262–264. doi: 10.1038/365262a0. [DOI] [PubMed] [Google Scholar]
  27. Dubiel W., Ferrell K., Pratt G., Rechsteiner M. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J Biol Chem. 1992 Nov 15;267(32):22699–22702. [PubMed] [Google Scholar]
  28. Dubiel W., Ferrell K., Rechsteiner M. Subunits of the regulatory complex of the 26S protease. Mol Biol Rep. 1995;21(1):27–34. doi: 10.1007/BF00990967. [DOI] [PubMed] [Google Scholar]
  29. Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem. 1992 Nov 5;267(31):22369–22377. [PubMed] [Google Scholar]
  30. Ehring B., Meyer T. H., Eckerskorn C., Lottspeich F., Tampé R. Effects of major-histocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes. Cleavage of proteins and antigenic peptides. Eur J Biochem. 1996 Jan 15;235(1-2):404–415. doi: 10.1111/j.1432-1033.1996.00404.x. [DOI] [PubMed] [Google Scholar]
  31. Eisenlohr L. C., Bacik I., Bennink J. R., Bernstein K., Yewdell J. W. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell. 1992 Dec 11;71(6):963–972. doi: 10.1016/0092-8674(92)90392-p. [DOI] [PubMed] [Google Scholar]
  32. Eleuteri A. M., Kohanski R. A., Cardozo C., Orlowski M. Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity. J Biol Chem. 1997 May 2;272(18):11824–11831. doi: 10.1074/jbc.272.18.11824. [DOI] [PubMed] [Google Scholar]
  33. Elliott T. Transporter associated with antigen processing. Adv Immunol. 1997;65:47–109. [PubMed] [Google Scholar]
  34. Enenkel C., Lehmann H., Kipper J., Gückel R., Hilt W., Wolf D. H. PRE3, highly homologous to the human major histocompatibility complex-linked LMP2 (RING12) gene, codes for a yeast proteasome subunit necessary for the peptidylglutamyl-peptide hydrolyzing activity. FEBS Lett. 1994 Mar 21;341(2-3):193–196. doi: 10.1016/0014-5793(94)80455-9. [DOI] [PubMed] [Google Scholar]
  35. Engelhard V. H. Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol. 1994;12:181–207. doi: 10.1146/annurev.iy.12.040194.001145. [DOI] [PubMed] [Google Scholar]
  36. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
  37. Früh K., Gossen M., Wang K., Bujard H., Peterson P. A., Yang Y. Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J. 1994 Jul 15;13(14):3236–3244. doi: 10.1002/j.1460-2075.1994.tb06625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Früh K., Yang Y. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol. 1999 Feb;11(1):76–81. doi: 10.1016/s0952-7915(99)80014-4. [DOI] [PubMed] [Google Scholar]
  39. Gaczynska M., Rock K. L., Goldberg A. L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature. 1993 Sep 16;365(6443):264–267. doi: 10.1038/365264a0. [DOI] [PubMed] [Google Scholar]
  40. Gaczynska M., Rock K. L., Spies T., Goldberg A. L. Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9213–9217. doi: 10.1073/pnas.91.20.9213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Glickman M. H., Rubin D. M., Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V. A., Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell. 1998 Sep 4;94(5):615–623. doi: 10.1016/s0092-8674(00)81603-7. [DOI] [PubMed] [Google Scholar]
  42. Gray C. W., Slaughter C. A., DeMartino G. N. PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol. 1994 Feb 11;236(1):7–15. doi: 10.1006/jmbi.1994.1113. [DOI] [PubMed] [Google Scholar]
  43. Groettrup M., Kraft R., Kostka S., Standera S., Stohwasser R., Kloetzel P. M. A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur J Immunol. 1996 Apr;26(4):863–869. doi: 10.1002/eji.1830260421. [DOI] [PubMed] [Google Scholar]
  44. Groettrup M., Ruppert T., Kuehn L., Seeger M., Standera S., Koszinowski U., Kloetzel P. M. The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. J Biol Chem. 1995 Oct 6;270(40):23808–23815. doi: 10.1074/jbc.270.40.23808. [DOI] [PubMed] [Google Scholar]
  45. Groettrup M., Soza A., Kuckelkorn U., Kloetzel P. M. Peptide antigen production by the proteasome: complexity provides efficiency. Immunol Today. 1996 Sep;17(9):429–435. doi: 10.1016/0167-5699(96)10051-7. [DOI] [PubMed] [Google Scholar]
  46. Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H. D., Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997 Apr 3;386(6624):463–471. doi: 10.1038/386463a0. [DOI] [PubMed] [Google Scholar]
  47. Harris C. A., Hunte B., Krauss M. R., Taylor A., Epstein L. B. Induction of leucine aminopeptidase by interferon-gamma. Identification by protein microsequencing after purification by preparative two-dimensional gel electrophoresis. J Biol Chem. 1992 Apr 5;267(10):6865–6869. [PubMed] [Google Scholar]
  48. Heinemeyer W., Gruhler A., Möhrle V., Mahé Y., Wolf D. H. PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chrymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem. 1993 Mar 5;268(7):5115–5120. [PubMed] [Google Scholar]
  49. Hendil K. B., Khan S., Tanaka K. Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem J. 1998 Jun 15;332(Pt 3):749–754. doi: 10.1042/bj3320749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  51. Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997 Dec;9(6):788–799. doi: 10.1016/s0955-0674(97)80079-8. [DOI] [PubMed] [Google Scholar]
  52. Hilt W., Enenkel C., Gruhler A., Singer T., Wolf D. H. The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem. 1993 Feb 15;268(5):3479–3486. [PubMed] [Google Scholar]
  53. Hisamatsu H., Shimbara N., Saito Y., Kristensen P., Hendil K. B., Fujiwara T., Takahashi E., Tanahashi N., Tamura T., Ichihara A. Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma. J Exp Med. 1996 Apr 1;183(4):1807–1816. doi: 10.1084/jem.183.4.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Hoffman L., Pratt G., Rechsteiner M. Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J Biol Chem. 1992 Nov 5;267(31):22362–22368. [PubMed] [Google Scholar]
  55. Hoffman L., Rechsteiner M. Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits. J Biol Chem. 1994 Jun 17;269(24):16890–16895. [PubMed] [Google Scholar]
  56. Hoffman L., Rechsteiner M. Nucleotidase activities of the 26 S proteasome and its regulatory complex. J Biol Chem. 1996 Dec 20;271(51):32538–32545. doi: 10.1074/jbc.271.51.32538. [DOI] [PubMed] [Google Scholar]
  57. Hoffman L., Rechsteiner M. Regulatory features of multicatalytic and 26S proteases. Curr Top Cell Regul. 1996;34:1–32. doi: 10.1016/s0070-2137(96)80001-x. [DOI] [PubMed] [Google Scholar]
  58. Honoré B., Leffers H., Madsen P., Celis J. E. Interferon-gamma up-regulates a unique set of proteins in human keratinocytes. Molecular cloning and expression of the cDNA encoding the RGD-sequence-containing protein IGUP I-5111. Eur J Biochem. 1993 Dec 1;218(2):421–430. doi: 10.1111/j.1432-1033.1993.tb18392.x. [DOI] [PubMed] [Google Scholar]
  59. Hough R., Pratt G., Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem. 1987 Jun 15;262(17):8303–8313. [PubMed] [Google Scholar]
  60. Hough R., Pratt G., Rechsteiner M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem. 1986 Feb 15;261(5):2400–2408. [PubMed] [Google Scholar]
  61. Jiang H., Monaco J. J. Sequence and expression of mouse proteasome activator PA28 and the related autoantigen Ki. Immunogenetics. 1997;46(2):93–98. doi: 10.1007/s002510050246. [DOI] [PubMed] [Google Scholar]
  62. Johnston S. C., Whitby F. G., Realini C., Rechsteiner M., Hill C. P. The proteasome 11S regulator subunit REG alpha (PA28 alpha) is a heptamer. Protein Sci. 1997 Nov;6(11):2469–2473. doi: 10.1002/pro.5560061123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Jones E. Y. MHC class I and class II structures. Curr Opin Immunol. 1997 Feb;9(1):75–79. doi: 10.1016/s0952-7915(97)80162-8. [DOI] [PubMed] [Google Scholar]
  64. Kandil E., Kohda K., Ishibashi T., Tanaka K., Kasahara M. PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics. 1997;46(4):337–344. doi: 10.1007/s002510050281. [DOI] [PubMed] [Google Scholar]
  65. Kisselev A. F., Akopian T. N., Goldberg A. L. Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem. 1998 Jan 23;273(4):1982–1989. doi: 10.1074/jbc.273.4.1982. [DOI] [PubMed] [Google Scholar]
  66. Kisselev A. F., Akopian T. N., Woo K. M., Goldberg A. L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem. 1999 Feb 5;274(6):3363–3371. doi: 10.1074/jbc.274.6.3363. [DOI] [PubMed] [Google Scholar]
  67. Knowlton J. R., Johnston S. C., Whitby F. G., Realini C., Zhang Z., Rechsteiner M., Hill C. P. Structure of the proteasome activator REGalpha (PA28alpha). Nature. 1997 Dec 11;390(6660):639–643. doi: 10.1038/37670. [DOI] [PubMed] [Google Scholar]
  68. Koopmann J. O., Hämmerling G. J., Momburg F. Generation, intracellular transport and loading of peptides associated with MHC class I molecules. Curr Opin Immunol. 1997 Feb;9(1):80–88. doi: 10.1016/s0952-7915(97)80163-x. [DOI] [PubMed] [Google Scholar]
  69. Kopp F., Hendil K. B., Dahlmann B., Kristensen P., Sobek A., Uerkvitz W. Subunit arrangement in the human 20S proteasome. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2939–2944. doi: 10.1073/pnas.94.7.2939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kuckelkorn U., Frentzel S., Kraft R., Kostka S., Groettrup M., Kloetzel P. M. Incorporation of major histocompatibility complex--encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma. Eur J Immunol. 1995 Sep;25(9):2605–2611. doi: 10.1002/eji.1830250930. [DOI] [PubMed] [Google Scholar]
  71. Kuehn L., Dahlmann B. Proteasome activator PA28 and its interaction with 20 S proteasomes. Arch Biochem Biophys. 1996 May 1;329(1):87–96. doi: 10.1006/abbi.1996.0195. [DOI] [PubMed] [Google Scholar]
  72. Kuehn L., Dahlmann B. Reconstitution of proteasome activator PA28 from isolated subunits: optimal activity is associated with an alpha,beta-heteromultimer. FEBS Lett. 1996 Sep 30;394(2):183–186. doi: 10.1016/0014-5793(96)00946-5. [DOI] [PubMed] [Google Scholar]
  73. Lam Y. A., Xu W., DeMartino G. N., Cohen R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature. 1997 Feb 20;385(6618):737–740. doi: 10.1038/385737a0. [DOI] [PubMed] [Google Scholar]
  74. Lehner P. J., Trowsdale J. Antigen presentation: coming out gracefully. Curr Biol. 1998 Aug 27;8(17):R605–R608. doi: 10.1016/s0960-9822(98)70387-2. [DOI] [PubMed] [Google Scholar]
  75. Li N., Lerea K. M., Etlinger J. D. Phosphorylation of the proteasome activator PA28 is required for proteasome activation. Biochem Biophys Res Commun. 1996 Aug 23;225(3):855–860. doi: 10.1006/bbrc.1996.1263. [DOI] [PubMed] [Google Scholar]
  76. Luckey C. J., King G. M., Marto J. A., Venketeswaran S., Maier B. F., Crotzer V. L., Colella T. A., Shabanowitz J., Hunt D. F., Engelhard V. H. Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. J Immunol. 1998 Jul 1;161(1):112–121. [PubMed] [Google Scholar]
  77. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  78. Ma C. P., Slaughter C. A., DeMartino G. N. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J Biol Chem. 1992 May 25;267(15):10515–10523. [PubMed] [Google Scholar]
  79. Ma C. P., Willy P. J., Slaughter C. A., DeMartino G. N. PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J Biol Chem. 1993 Oct 25;268(30):22514–22519. [PubMed] [Google Scholar]
  80. McCusker D., Jones T., Sheer D., Trowsdale J. Genetic relationships of the genes encoding the human proteasome beta subunits and the proteasome PA28 complex. Genomics. 1997 Oct 15;45(2):362–367. doi: 10.1006/geno.1997.4948. [DOI] [PubMed] [Google Scholar]
  81. McCusker D., Wilson M., Trowsdale J. Organization of the genes encoding the human proteasome activators PA28alpha and beta. Immunogenetics. 1999 May;49(5):438–445. doi: 10.1007/s002510050517. [DOI] [PubMed] [Google Scholar]
  82. Momburg F., Hämmerling G. J. Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv Immunol. 1998;68:191–256. doi: 10.1016/s0065-2776(08)60560-x. [DOI] [PubMed] [Google Scholar]
  83. Mott J. D., Pramanik B. C., Moomaw C. R., Afendis S. J., DeMartino G. N., Slaughter C. A. PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. J Biol Chem. 1994 Dec 16;269(50):31466–31471. [PubMed] [Google Scholar]
  84. Nandi D., Jiang H., Monaco J. J. Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol. 1996 Apr 1;156(7):2361–2364. [PubMed] [Google Scholar]
  85. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  86. Niedermann G., Butz S., Ihlenfeldt H. G., Grimm R., Lucchiari M., Hoschützky H., Jung G., Maier B., Eichmann K. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity. 1995 Mar;2(3):289–299. doi: 10.1016/1074-7613(95)90053-5. [DOI] [PubMed] [Google Scholar]
  87. Niedermann G., Grimm R., Geier E., Maurer M., Realini C., Gartmann C., Soll J., Omura S., Rechsteiner M. C., Baumeister W. Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system. J Exp Med. 1997 Jul 21;186(2):209–220. doi: 10.1084/jem.186.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Niedermann G., King G., Butz S., Birsner U., Grimm R., Shabanowitz J., Hunt D. F., Eichmann K. The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8572–8577. doi: 10.1073/pnas.93.16.8572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Nikaido T., Shimada K., Shibata M., Hata M., Sakamoto M., Takasaki Y., Sato C., Takahashi T., Nishida Y. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin Exp Immunol. 1990 Feb;79(2):209–214. doi: 10.1111/j.1365-2249.1990.tb05180.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Nussbaum A. K., Dick T. P., Keilholz W., Schirle M., Stevanović S., Dietz K., Heinemeyer W., Groll M., Wolf D. H., Huber R. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12504–12509. doi: 10.1073/pnas.95.21.12504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Orlowski M., Cardozo C., Eleuteri A. M., Kohanski R., Kam C. M., Powers J. C. Reactions of [14C]-3,4-dichloroisocoumarin with subunits of pituitary and spleen multicatalytic proteinase complexes (proteasomes). Biochemistry. 1997 Nov 11;36(45):13946–13953. doi: 10.1021/bi970666e. [DOI] [PubMed] [Google Scholar]
  92. Orlowski M., Cardozo C., Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry. 1993 Feb 16;32(6):1563–1572. doi: 10.1021/bi00057a022. [DOI] [PubMed] [Google Scholar]
  93. Ossendorp F., Eggers M., Neisig A., Ruppert T., Groettrup M., Sijts A., Mengedë E., Kloetzel P. M., Neefjes J., Koszinowski U. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity. 1996 Aug;5(2):115–124. doi: 10.1016/s1074-7613(00)80488-4. [DOI] [PubMed] [Google Scholar]
  94. Pamer E. G., Sijts A. J., Villanueva M. S., Busch D. H., Vijh S. MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol Rev. 1997 Aug;158:129–136. doi: 10.1111/j.1600-065x.1997.tb00999.x. [DOI] [PubMed] [Google Scholar]
  95. Pamer E., Cresswell P. Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol. 1998;16:323–358. doi: 10.1146/annurev.immunol.16.1.323. [DOI] [PubMed] [Google Scholar]
  96. Peters J. M., Cejka Z., Harris J. R., Kleinschmidt J. A., Baumeister W. Structural features of the 26 S proteasome complex. J Mol Biol. 1993 Dec 20;234(4):932–937. doi: 10.1006/jmbi.1993.1646. [DOI] [PubMed] [Google Scholar]
  97. Peters J. M., Franke W. W., Kleinschmidt J. A. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994 Mar 11;269(10):7709–7718. [PubMed] [Google Scholar]
  98. Rammensee H. G., Falk K., Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol. 1993;11:213–244. doi: 10.1146/annurev.iy.11.040193.001241. [DOI] [PubMed] [Google Scholar]
  99. Rapoport T. A., Jungnickel B., Kutay U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem. 1996;65:271–303. doi: 10.1146/annurev.bi.65.070196.001415. [DOI] [PubMed] [Google Scholar]
  100. Realini C., Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Molecular cloning and expression of a gamma-interferon-inducible activator of the multicatalytic protease. J Biol Chem. 1994 Aug 12;269(32):20727–20732. [PubMed] [Google Scholar]
  101. Realini C., Jensen C. C., Zhang Z., Johnston S. C., Knowlton J. R., Hill C. P., Rechsteiner M. Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators. J Biol Chem. 1997 Oct 10;272(41):25483–25492. doi: 10.1074/jbc.272.41.25483. [DOI] [PubMed] [Google Scholar]
  102. Realini C., Rechsteiner M. A proteasome activator subunit binds calcium. J Biol Chem. 1995 Dec 15;270(50):29664–29667. doi: 10.1074/jbc.270.50.29664. [DOI] [PubMed] [Google Scholar]
  103. Realini C., Rogers S. W., Rechsteiner M. KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett. 1994 Jul 11;348(2):109–113. doi: 10.1016/0014-5793(94)00569-9. [DOI] [PubMed] [Google Scholar]
  104. Rechsteiner M., Rogers S. W. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996 Jul;21(7):267–271. [PubMed] [Google Scholar]
  105. Reidlinger J., Pike A. M., Savory P. J., Murray R. Z., Rivett A. J. Catalytic properties of 26 S and 20 S proteasomes and radiolabeling of MB1, LMP7, and C7 subunits associated with trypsin-like and chymotrypsin-like activities. J Biol Chem. 1997 Oct 3;272(40):24899–24905. doi: 10.1074/jbc.272.40.24899. [DOI] [PubMed] [Google Scholar]
  106. Richmond C., Gorbea C., Rechsteiner M. Specific interactions between ATPase subunits of the 26 S protease. J Biol Chem. 1997 May 16;272(20):13403–13411. doi: 10.1074/jbc.272.20.13403. [DOI] [PubMed] [Google Scholar]
  107. Rock K. L., Goldberg A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol. 1999;17:739–779. doi: 10.1146/annurev.immunol.17.1.739. [DOI] [PubMed] [Google Scholar]
  108. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  109. Schimke R. T. Control of enzyme levels in mammalian tissues. Adv Enzymol Relat Areas Mol Biol. 1973;37:135–187. doi: 10.1002/9780470122822.ch3. [DOI] [PubMed] [Google Scholar]
  110. Schirmbeck R., Böhm W., Reimann J. Stress protein (hsp73)-mediated, TAP-independent processing of endogenous, truncated SV40 large T antigen for Db-restricted peptide presentation. Eur J Immunol. 1997 Aug;27(8):2016–2023. doi: 10.1002/eji.1830270828. [DOI] [PubMed] [Google Scholar]
  111. Schmidtke G., Eggers M., Ruppert T., Groettrup M., Koszinowski U. H., Kloetzel P. M. Inactivation of a defined active site in the mouse 20S proteasome complex enhances major histocompatibility complex class I antigen presentation of a murine cytomegalovirus protein. J Exp Med. 1998 May 18;187(10):1641–1646. doi: 10.1084/jem.187.10.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Seemüller E., Lupas A., Stock D., Löwe J., Huber R., Baumeister W. Proteasome from Thermoplasma acidophilum: a threonine protease. Science. 1995 Apr 28;268(5210):579–582. doi: 10.1126/science.7725107. [DOI] [PubMed] [Google Scholar]
  113. Shaeffer J. R. Monoubiquitinated alpha globin is an intermediate in the ATP-dependent proteolysis of alpha globin. J Biol Chem. 1994 Sep 2;269(35):22205–22210. [PubMed] [Google Scholar]
  114. Shelton E., Kuff E. L., Maxwell E. S., Harrington J. T. Cytoplasmic particles and aminoacyl transferase I activity. J Cell Biol. 1970 Apr;45(1):1–8. doi: 10.1083/jcb.45.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Shimbara N., Nakajima H., Tanahashi N., Ogawa K., Niwa S., Uenaka A., Nakayama E., Tanaka K. Double-cleavage production of the CTL epitope by proteasomes and PA28: role of the flanking region. Genes Cells. 1997 Dec;2(12):785–800. doi: 10.1046/j.1365-2443.1997.1610359.x. [DOI] [PubMed] [Google Scholar]
  116. Snyder H. L., Yewdell J. W., Bennink J. R. Trimming of antigenic peptides in an early secretory compartment. J Exp Med. 1994 Dec 1;180(6):2389–2394. doi: 10.1084/jem.180.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Song X., Mott J. D., von Kampen J., Pramanik B., Tanaka K., Slaughter C. A., DeMartino G. N. A model for the quaternary structure of the proteasome activator PA28. J Biol Chem. 1996 Oct 18;271(42):26410–26417. doi: 10.1074/jbc.271.42.26410. [DOI] [PubMed] [Google Scholar]
  118. Song X., von Kampen J., Slaughter C. A., DeMartino G. N. Relative functions of the alpha and beta subunits of the proteasome activator, PA28. J Biol Chem. 1997 Oct 31;272(44):27994–28000. doi: 10.1074/jbc.272.44.27994. [DOI] [PubMed] [Google Scholar]
  119. Soza A., Knuehl C., Groettrup M., Henklein P., Tanaka K., Kloetzel P. M. Expression and subcellular localization of mouse 20S proteasome activator complex PA28. FEBS Lett. 1997 Aug 11;413(1):27–34. doi: 10.1016/s0014-5793(97)00864-8. [DOI] [PubMed] [Google Scholar]
  120. Tanahashi N., Yokota K., Ahn J. Y., Chung C. H., Fujiwara T., Takahashi E., DeMartino G. N., Slaughter C. A., Toyonaga T., Yamamura K. Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells. 1997 Mar;2(3):195–211. doi: 10.1046/j.1365-2443.1997.d01-308.x. [DOI] [PubMed] [Google Scholar]
  121. Tanaka K., Kasahara M. The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev. 1998 Jun;163:161–176. doi: 10.1111/j.1600-065x.1998.tb01195.x. [DOI] [PubMed] [Google Scholar]
  122. Tanaka K., Tamura T., Yoshimura T., Ichihara A. Proteasomes: protein and gene structures. New Biol. 1992 Mar;4(3):173–187. [PubMed] [Google Scholar]
  123. Tanaka K., Tanahashi N., Tsurumi C., Yokota K. Y., Shimbara N. Proteasomes and antigen processing. Adv Immunol. 1997;64:1–38. doi: 10.1016/s0065-2776(08)60885-8. [DOI] [PubMed] [Google Scholar]
  124. Theobald M., Ruppert T., Kuckelkorn U., Hernandez J., Häussler A., Ferreira E. A., Liewer U., Biggs J., Levine A. J., Huber C. The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J Exp Med. 1998 Sep 21;188(6):1017–1028. doi: 10.1084/jem.188.6.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Thomson S., Rivett A. J. Processing of N3, a mammalian proteasome beta-type subunit. Biochem J. 1996 May 1;315(Pt 3):733–738. doi: 10.1042/bj3150733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Udvardy A. Purification and characterization of a multiprotein component of the Drosophila 26 S (1500 kDa) proteolytic complex. J Biol Chem. 1993 Apr 25;268(12):9055–9062. [PubMed] [Google Scholar]
  127. Ustrell V., Pratt G., Rechsteiner M. Effects of interferon gamma and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):584–588. doi: 10.1073/pnas.92.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Ustrell V., Realini C., Pratt G., Rechsteiner M. Human lymphoblast and erythrocyte multicatalytic proteases: differential peptidase activities and responses to the 11S regulator. FEBS Lett. 1995 Dec 4;376(3):155–158. doi: 10.1016/0014-5793(95)01257-9. [DOI] [PubMed] [Google Scholar]
  129. Valmori D., Gileadi U., Servis C., Dunbar P. R., Cerottini J. C., Romero P., Cerundolo V., Lévy F. Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J Exp Med. 1999 Mar 15;189(6):895–906. doi: 10.1084/jem.189.6.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Wang J., Hartling J. A., Flanagan J. M. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell. 1997 Nov 14;91(4):447–456. doi: 10.1016/s0092-8674(00)80431-6. [DOI] [PubMed] [Google Scholar]
  131. Wang X., Omura S., Szweda L. I., Yang Y., Bérard J., Seminaro J., Wu J. Rapamycin inhibits proteasome activator expression and proteasome activity. Eur J Immunol. 1997 Nov;27(11):2781–2786. doi: 10.1002/eji.1830271106. [DOI] [PubMed] [Google Scholar]
  132. Wells A. D., Rai S. K., Salvato M. S., Band H., Malkovsky M. Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol. 1998 May;10(5):609–617. doi: 10.1093/intimm/10.5.609. [DOI] [PubMed] [Google Scholar]
  133. Wells A. D., Rai S. K., Salvato M. S., Band H., Malkovsky M. Restoration of MHC class I surface expression and endogenous antigen presentation by a molecular chaperone. Scand J Immunol. 1997 Jun;45(6):605–612. doi: 10.1046/j.1365-3083.1997.d01-436.x. [DOI] [PubMed] [Google Scholar]
  134. Wenzel T., Eckerskorn C., Lottspeich F., Baumeister W. Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett. 1994 Aug 1;349(2):205–209. doi: 10.1016/0014-5793(94)00665-2. [DOI] [PubMed] [Google Scholar]
  135. Wilk S., Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem. 1983 Mar;40(3):842–849. doi: 10.1111/j.1471-4159.1983.tb08056.x. [DOI] [PubMed] [Google Scholar]
  136. Wójcik C., Tanaka K., Paweletz N., Naab U., Wilk S. Proteasome activator (PA28) subunits, alpha, beta and gamma (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur J Cell Biol. 1998 Oct;77(2):151–160. doi: 10.1016/s0171-9335(98)80083-6. [DOI] [PubMed] [Google Scholar]
  137. Yewdell J. W., Bennink J. R. Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv Immunol. 1992;52:1–123. doi: 10.1016/s0065-2776(08)60875-5. [DOI] [PubMed] [Google Scholar]
  138. Yewdell J. W., Bennink J. R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol. 1999;17:51–88. doi: 10.1146/annurev.immunol.17.1.51. [DOI] [PubMed] [Google Scholar]
  139. Yoshimura T., Kameyama K., Takagi T., Ikai A., Tokunaga F., Koide T., Tanahashi N., Tamura T., Cejka Z., Baumeister W. Molecular characterization of the "26S" proteasome complex from rat liver. J Struct Biol. 1993 Nov-Dec;111(3):200–211. doi: 10.1006/jsbi.1993.1050. [DOI] [PubMed] [Google Scholar]
  140. Yukawa M., Sakon M., Kambayashi J., Shiba E., Kawasaki T., Ariyoshi H., Mori T. Proteasome and its novel endogeneous activator in human platelets. Biochem Biophys Res Commun. 1991 Jul 15;178(1):256–262. doi: 10.1016/0006-291x(91)91807-o. [DOI] [PubMed] [Google Scholar]
  141. Zaiss D. M., Kloetzel P. M. A second gene encoding the mouse proteasome activator PA28beta subunit is part of a LINE1 element and is driven by a LINE1 promoter. J Mol Biol. 1999 Apr 16;287(5):829–835. doi: 10.1006/jmbi.1999.2656. [DOI] [PubMed] [Google Scholar]
  142. Zhang L., Kelley J., Schmeisser G., Kobayashi Y. M., Jones L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 1997 Sep 12;272(37):23389–23397. doi: 10.1074/jbc.272.37.23389. [DOI] [PubMed] [Google Scholar]
  143. Zhang Z., Clawson A., Realini C., Jensen C. C., Knowlton J. R., Hill C. P., Rechsteiner M. Identification of an activation region in the proteasome activator REGalpha. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2807–2811. doi: 10.1073/pnas.95.6.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Zhang Z., Clawson A., Rechsteiner M. The proteasome activator 11 S regulator or PA28. Contribution By both alpha and beta subunits to proteasome activation. J Biol Chem. 1998 Nov 13;273(46):30660–30668. doi: 10.1074/jbc.273.46.30660. [DOI] [PubMed] [Google Scholar]
  145. Zhang Z., Krutchinsky A., Endicott S., Realini C., Rechsteiner M., Standing K. G. Proteasome activator 11S REG or PA28: recombinant REG alpha/REG beta hetero-oligomers are heptamers. Biochemistry. 1999 Apr 27;38(17):5651–5658. doi: 10.1021/bi990056+. [DOI] [PubMed] [Google Scholar]
  146. Zhang Z., Realini C., Clawson A., Endicott S., Rechsteiner M. Proteasome activation by REG molecules lacking homolog-specific inserts. J Biol Chem. 1998 Apr 17;273(16):9501–9509. doi: 10.1074/jbc.273.16.9501. [DOI] [PubMed] [Google Scholar]
  147. Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]
  148. van Nocker S., Sadis S., Rubin D. M., Glickman M., Fu H., Coux O., Wefes I., Finley D., Vierstra R. D. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol. 1996 Nov;16(11):6020–6028. doi: 10.1128/mcb.16.11.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES