Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 1;345(Pt 1):53–60.

Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies.

M Abou Hachem 1, E Nordberg Karlsson 1, E Bartonek-Roxâ 1, S Raghothama 1, P J Simpson 1, H J Gilbert 1, M P Williamson 1, O Holst 1
PMCID: PMC1220729  PMID: 10600638

Abstract

The two N-terminally repeated carbohydrate-binding modules (CBM4-1 and CBM4-2) encoded by xyn10A from Rhodothermus marinus were produced in Escherichia coli and purified by affinity chromatography. Binding assays to insoluble polysaccharides showed binding to insoluble xylan and to phosphoric-acid-swollen cellulose but not to Avicel or crystalline cellulose. Binding to insoluble substrates was significantly enhanced by the presence of Na(+) and Ca(2+) ions. The binding affinities for soluble polysaccharides were tested by affinity electrophoresis; strong binding occurred with different xylans and beta-glucan. CBM4-2 displayed a somewhat higher binding affinity than CBM4-1 for both soluble and insoluble substrates but both had similar specificities. Binding to short oligosaccharides was measured by NMR; both modules bound with similar affinities. The binding of the modules was shown to be dominated by enthalpic forces. The binding modules did not contribute with any significant synergistic effects on xylan hydrolysis when incubated with a Xyn10A catalytic module. This is the first report of family 4 CBMs with affinity for both insoluble xylan and amorphous cellulose.

Full Text

The Full Text of this article is available as a PDF (175.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black G. W., Hazlewood G. P., Millward-Sadler S. J., Laurie J. I., Gilbert H. J. A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem J. 1995 Apr 1;307(Pt 1):191–195. doi: 10.1042/bj3070191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black G. W., Rixon J. E., Clarke J. H., Hazlewood G. P., Ferreira L. M., Bolam D. N., Gilbert H. J. Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol. 1997 Sep 16;57(1-3):59–69. doi: 10.1016/s0168-1656(97)00089-8. [DOI] [PubMed] [Google Scholar]
  3. Black G. W., Rixon J. E., Clarke J. H., Hazlewood G. P., Theodorou M. K., Morris P., Gilbert H. J. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J. 1996 Oct 15;319(Pt 2):515–520. doi: 10.1042/bj3190515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J. 1998 May 1;331(Pt 3):775–781. doi: 10.1042/bj3310775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Creagh A. L., Ong E., Jervis E., Kilburn D. G., Haynes C. A. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12229–12234. doi: 10.1073/pnas.93.22.12229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Din N., Damude H. G., Gilkes N. R., Miller R. C., Jr, Warren R. A., Kilburn D. G. C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11383–11387. doi: 10.1073/pnas.91.24.11383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilkes N. R., Warren R. A., Miller R. C., Jr, Kilburn D. G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem. 1988 Jul 25;263(21):10401–10407. [PubMed] [Google Scholar]
  9. Henrissat B., Teeri T. T., Warren R. A. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 1998 Mar 27;425(2):352–354. doi: 10.1016/s0014-5793(98)00265-8. [DOI] [PubMed] [Google Scholar]
  10. Johnson P. E., Joshi M. D., Tomme P., Kilburn D. G., McIntosh L. P. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1996 Nov 12;35(45):14381–14394. doi: 10.1021/bi961612s. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Linder M., Teeri T. T. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12251–12255. doi: 10.1073/pnas.93.22.12251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millward-Sadler S. J., Davidson K., Hazlewood G. P., Black G. W., Gilbert H. J., Clarke J. H. Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J. 1995 Nov 15;312(Pt 1):39–48. doi: 10.1042/bj3120039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Millward-Sadler S. J., Poole D. M., Henrissat B., Hazlewood G. P., Clarke J. H., Gilbert H. J. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol. 1994 Jan;11(2):375–382. doi: 10.1111/j.1365-2958.1994.tb00317.x. [DOI] [PubMed] [Google Scholar]
  15. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nordberg Karlsson E., Bartonek-Roxå E., Holst O. Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim Biophys Acta. 1997 Aug 7;1353(2):118–124. doi: 10.1016/s0167-4781(97)00093-6. [DOI] [PubMed] [Google Scholar]
  17. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  18. Sakka K., Takada G., Karita S., Ohmiya K. Identification and characterization of cellulose-binding domains in xylanase A of Clostridium stercorarium. Ann N Y Acad Sci. 1996 May 15;782:241–251. doi: 10.1111/j.1749-6632.1996.tb40565.x. [DOI] [PubMed] [Google Scholar]
  19. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  20. Simpson P. J., Bolam D. N., Cooper A., Ciruela A., Hazlewood G. P., Gilbert H. J., Williamson M. P. A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure. 1999 Jul 15;7(7):853–864. doi: 10.1016/s0969-2126(99)80108-7. [DOI] [PubMed] [Google Scholar]
  21. Tomme P., Creagh A. L., Kilburn D. G., Haynes C. A. Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry. 1996 Nov 5;35(44):13885–13894. doi: 10.1021/bi961185i. [DOI] [PubMed] [Google Scholar]
  22. Tomme P., Van Tilbeurgh H., Pettersson G., Van Damme J., Vandekerckhove J., Knowles J., Teeri T., Claeyssens M. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem. 1988 Jan 4;170(3):575–581. doi: 10.1111/j.1432-1033.1988.tb13736.x. [DOI] [PubMed] [Google Scholar]
  23. Winterhalter C., Heinrich P., Candussio A., Wich G., Liebl W. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol. 1995 Feb;15(3):431–444. doi: 10.1111/j.1365-2958.1995.tb02257.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES