Abstract
Unsaturated lysophosphatidylcholines (lysoPtdCho) bound to albumin circulate in blood plasma and seem to be a novel transport system for carrying polyunsaturated fatty acids (PUFA) to tissues that are rich in these fatty acids, such as the brain. The potential of these lysoPtdCho as a significant source of PUFA for cells has been assessed by comparing their plasma concentration with that of unsaturated non-esterified fatty acids (NEFA) bound to albumin. In humans, the PUFA concentration was 25.9+/-3.1 nmol/ml for these lysoPtdCho, compared with 33.4+/-9.6 nmol/ml for NEFA; in rats the equivalent values are 14.2+/-0.6 and 13.1+/-1.1 nmol/ml respectively (means+/-S.E.M.). The lysoPtdCho arachidonic acid content was 2-fold (human) and 5-fold (rat) higher than that of NEFA. In human and rat plasma, unsaturated lysoPtdCho were associated mainly with albumin rather than lipoproteins. The rate and extent of the acyl group shift from the sn-2 to sn-1 position of these lysoPtdCho were studied by the incubation of 1-lyso, 2-[(14)C]C(18:2)n-6-glycerophosphocholine (GPC) with plasma. The rapid isomerization of this lipid occurred at pH 7 (20% isomerization within 2 min) and was not prevented by its association with albumin. The position of the acyl group in the lysoPtdCho circulating in plasma was studied by collecting blood directly in organic solvents containing 1-lyso,2-[(14)C]C(18:2)n-6-GPC as a marker of isomerization that occurred during sampling and analysis. Approx. 50% of the PUFA was located at the sn-2 position, demonstrating that substantial concentrations of 2-acyl-lysoPtdCho are present in plasma and are available for tissue uptake, where they can be reacylated at the sn-1 position to form membrane phospholipids.
Full Text
The Full Text of this article is available as a PDF (135.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberghina M., Infarinato S., Anfuso C. D., Lupo G. 1-Acyl-2-lysophosphatidylcholine transport across the blood-retina and blood-brain barrier. FEBS Lett. 1994 Sep 5;351(2):181–185. doi: 10.1016/0014-5793(94)00811-6. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Besterman J. M., Domanico P. L. Association and metabolism of exogenously-derived lysophosphatidylcholine by cultured mammalian cells: kinetics and mechanisms. Biochemistry. 1992 Feb 25;31(7):2046–2056. doi: 10.1021/bi00122a022. [DOI] [PubMed] [Google Scholar]
- Brossard N., Croset M., Lecerf J., Pachiaudi C., Normand S., Chirouze V., Macovschi O., Riou J. P., Tayot J. L., Lagarde M. Metabolic fate of an oral tracer dose of [13C]docosahexaenoic acid triglycerides in the rat. Am J Physiol. 1996 Apr;270(4 Pt 2):R846–R854. doi: 10.1152/ajpregu.1996.270.4.R846. [DOI] [PubMed] [Google Scholar]
- Brossard N., Croset M., Normand S., Pousin J., Lecerf J., Laville M., Tayot J. L., Lagarde M. Human plasma albumin transports [13C]docosahexaenoic acid in two lipid forms to blood cells. J Lipid Res. 1997 Aug;38(8):1571–1582. [PubMed] [Google Scholar]
- Brossard N., Pachiaudi C., Croset M., Normand S., Lecerf J., Chirouze V., Riou J. P., Tayot J. L., Lagarde M. Stable isotope tracer and gas-chromatography combustion isotope ratio mass spectrometry to study the in vivo compartmental metabolism of docosahexaenoic acid. Anal Biochem. 1994 Jul;220(1):192–199. doi: 10.1006/abio.1994.1318. [DOI] [PubMed] [Google Scholar]
- Creer M. H., Gross R. W. Separation of isomeric lysophospholipids by reverse phase HPLC. Lipids. 1985 Dec;20(12):922–928. doi: 10.1007/BF02534778. [DOI] [PubMed] [Google Scholar]
- Croset M., Bayon Y., Lagarde M. Incorporation and turnover of eicosapentaenoic and docosahexaenoic acids in human blood platelets in vitro. Biochem J. 1992 Jan 15;281(Pt 2):309–316. doi: 10.1042/bj2810309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhopeshwarkar G. A., Mead J. F. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv Lipid Res. 1973;11(0):109–142. doi: 10.1016/b978-0-12-024911-4.50010-6. [DOI] [PubMed] [Google Scholar]
- Frayn K. N., Shadid S., Hamlani R., Humphreys S. M., Clark M. L., Fielding B. A., Boland O., Coppack S. W. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol. 1994 Mar;266(3 Pt 1):E308–E317. doi: 10.1152/ajpendo.1994.266.3.E308. [DOI] [PubMed] [Google Scholar]
- Illingworth D. R., Portman O. W. The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys. Biochem J. 1972 Nov;130(2):557–567. doi: 10.1042/bj1300557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
- Morash S. C., Cook H. W., Spence M. W. Lysophosphatidylcholine as an intermediate in phosphatidylcholine metabolism and glycerophosphocholine synthesis in cultured cells: an evaluation of the roles of 1-acyl- and 2-acyl-lysophosphatidylcholine. Biochim Biophys Acta. 1989 Aug 8;1004(2):221–229. doi: 10.1016/0005-2760(89)90271-3. [DOI] [PubMed] [Google Scholar]
- Nelson G. J. The phospholipid composition of plasma in various mammalian species. Lipids. 1967 Jul;2(4):323–328. doi: 10.1007/BF02532119. [DOI] [PubMed] [Google Scholar]
- Plückthun A., Dennis E. A. Acyl and phosphoryl migration in lysophospholipids: importance in phospholipid synthesis and phospholipase specificity. Biochemistry. 1982 Apr 13;21(8):1743–1750. doi: 10.1021/bi00537a007. [DOI] [PubMed] [Google Scholar]
- Portman O. W., Illingworth D. R. Lysolecithin binding to human and squirrel monkey plasma and tissue components. Biochim Biophys Acta. 1973 Oct 17;326(1):34–42. doi: 10.1016/0005-2760(73)90025-8. [DOI] [PubMed] [Google Scholar]
- Portman O. W., Illingworth D. R. Metabolism of lysolecithin in vivo and in vitro with particular emphasis on the arterial wall. Biochim Biophys Acta. 1974 Apr 26;348(1):136–144. doi: 10.1016/0005-2760(74)90099-x. [DOI] [PubMed] [Google Scholar]
- Sekas G., Patton G. M., Lincoln E. C., Robins S. J. Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. J Lab Clin Med. 1985 Feb;105(2):190–194. [PubMed] [Google Scholar]
- Subbaiah P. V., Liu M., Bolan P. J., Paltauf F. Altered positional specificity of human plasma lecithin-cholesterol acyltransferase in the presence of sn-2 arachidonoyl phosphatidyl cholines. Mechanism of formation of saturated cholesteryl esters. Biochim Biophys Acta. 1992 Sep 22;1128(1):83–92. doi: 10.1016/0005-2760(92)90261-s. [DOI] [PubMed] [Google Scholar]
- Thies F., Pillon C., Moliere P., Lagarde M., Lecerf J. Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Physiol. 1994 Nov;267(5 Pt 2):R1273–R1279. doi: 10.1152/ajpregu.1994.267.5.R1273. [DOI] [PubMed] [Google Scholar]
- Thiés F., Delachambre M. C., Bentejac M., Lagarde M., Lecerf J. Unsaturated fatty acids esterified in 2-acyl-l-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem. 1992 Sep;59(3):1110–1116. doi: 10.1111/j.1471-4159.1992.tb08353.x. [DOI] [PubMed] [Google Scholar]
- Thumser A. E., Voysey J. E., Wilton D. C. The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin. Biochem J. 1994 Aug 1;301(Pt 3):801–806. doi: 10.1042/bj3010801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]