Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 1;345(Pt 1):77–84.

Evidence for phospholipases from Trypanosoma cruzi active on phosphatidylinositol and inositolphosphoceramide.

L E Bertello 1, M J Alves 1, W Colli 1, R M de Lederkremer 1
PMCID: PMC1220732  PMID: 10600641

Abstract

The lipid moiety in the glycosylphosphatidylinositol anchors of glycoproteins of Trypanosoma cruzi consists of an alkylacylglycerol, a lysoalkylglycerol or a ceramide. Previously, we showed that the inositolphosphoceramides (IPCs) are the major components in the precursor inositolphospholipids of epimastigote and trypomastigote forms. Using (3)H-labelled subfractions of IPC, phosphatidylinositol (PI) and glycoinositolphospholipids (GIPLs) as substrates with a cell-free system, we now demonstrate the association of at least five enzyme activities with the trypanosomal membranous particulate material. These include: phospholipase A(1) and phospholipase A(2), enzymes that release free fatty acid from the PI and GIPLs; an acyltransferase responsible for the acylation of the generated monoacyl or monoalkylglycerolipids with endogenous unlabelled fatty acid; two activities of phospholipase C, one releasing ceramide from IPC and the other alkylacylglycerol, alkylglycerol or diacylglycerol from PI. The neutral lipids were also generated on incubation of the GIPLs. The phospholipase C activities were inhibited by p-chloromercuriphenylsulphonic acid, as reported for other PI phospholipases C. An IPC-fatty-acid hydrolase, releasing fatty acid from the labelled IPC, was also observed. The enzyme activities reported in the present study may be acting in remodelling reactions leading to the anchor of the mature glycoproteins of T. cruzi.

Full Text

The Full Text of this article is available as a PDF (210.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affranchino J. L., Ibañez C. F., Luquetti A. O., Rassi A., Reyes M. B., Macina R. A., Aslund L., Pettersson U., Frasch A. C. Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas' disease. Mol Biochem Parasitol. 1989 May 15;34(3):221–228. doi: 10.1016/0166-6851(89)90050-9. [DOI] [PubMed] [Google Scholar]
  2. Agusti R., Couto A. S., Campetella O. E., Frasch A. C., de Lederkremer R. M. The trans-sialidase of Trypanosoma cruzi is anchored by two different lipids. Glycobiology. 1997 Sep;7(6):731–735. doi: 10.1093/glycob/7.6.731. [DOI] [PubMed] [Google Scholar]
  3. Agusti R., Couto A. S., Campetella O., Frasch A. C., de Lederkremer R. M. Structure of the glycosylphosphatidylinositol-anchor of the trans-sialidase from Trypanosoma cruzi metacyclic trypomastigote forms. Mol Biochem Parasitol. 1998 Nov 30;97(1-2):123–131. doi: 10.1016/s0166-6851(98)00137-6. [DOI] [PubMed] [Google Scholar]
  4. Andrews N. W., Robbins E. S., Ley V., Hong K. S., Nussenzweig V. Developmentally regulated, phospholipase C-mediated release of the major surface glycoprotein of amastigotes of Trypanosoma cruzi. J Exp Med. 1988 Feb 1;167(2):300–314. doi: 10.1084/jem.167.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertello L. E., Andrews N. W., de Lederkremer R. M. Developmentally regulated expression of ceramide in Trypanosoma cruzi. Mol Biochem Parasitol. 1996 Aug;79(2):143–151. doi: 10.1016/0166-6851(96)02645-x. [DOI] [PubMed] [Google Scholar]
  6. Bertello L. E., Gonçalvez M. F., Colli W., de Lederkremer R. M. Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms. Biochem J. 1995 Aug 15;310(Pt 1):255–261. doi: 10.1042/bj3100255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertello L. E., Salto M. L., de Lederkremer R. M. Lipase-catalyzed monoesterification of 1-O-hexadecylglycerol in organic solvents. Lipids. 1997 Aug;32(8):907–911. doi: 10.1007/s11745-997-0117-x. [DOI] [PubMed] [Google Scholar]
  8. Bowes A. E., Samad A. H., Jiang P., Weaver B., Mellors A. The acquisition of lysophosphatidylcholine by African trypanosomes. J Biol Chem. 1993 Jul 5;268(19):13885–13892. [PubMed] [Google Scholar]
  9. Buxbaum L. U., Milne K. G., Werbovetz K. A., Englund P. T. Myristate exchange on the Trypanosoma brucei variant surface glycoprotein. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1178–1183. doi: 10.1073/pnas.93.3.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buxbaum L. U., Raper J., Opperdoes F. R., Englund P. T. Myristate exchange. A second glycosyl phosphatidylinositol myristoylation reaction in African trypanosomes. J Biol Chem. 1994 Dec 2;269(48):30212–30220. [PubMed] [Google Scholar]
  11. Bülow R., Overath P. Purification and characterization of the membrane-form variant surface glycoprotein hydrolase of Trypanosoma brucei. J Biol Chem. 1986 Sep 5;261(25):11918–11923. [PubMed] [Google Scholar]
  12. Bütikofer P., Boschung M., Brodbeck U., Menon A. K. Phosphatidylinositol hydrolysis by Trypanosoma brucei glycosylphosphatidylinositol phospholipase C. J Biol Chem. 1996 Jun 28;271(26):15533–15541. doi: 10.1074/jbc.271.26.15533. [DOI] [PubMed] [Google Scholar]
  13. Bütikofer P., Brodbeck U. Partial purification and characterization of a (glycosyl) inositol phospholipid-specific phospholipase C from peanut. J Biol Chem. 1993 Aug 25;268(24):17794–17802. [PubMed] [Google Scholar]
  14. Conzelmann A., Puoti A., Lester R. L., Desponds C. Two different types of lipid moieties are present in glycophosphoinositol-anchored membrane proteins of Saccharomyces cerevisiae. EMBO J. 1992 Feb;11(2):457–466. doi: 10.1002/j.1460-2075.1992.tb05075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Couto A. S., De Lederkremer R. M., Colli W., Alves M. J. The glycosylphosphatidylinositol anchor of the trypomastigote-specific Tc-85 glycoprotein from Trypanosoma cruzi. Metabolic-labeling and structural studies. Eur J Biochem. 1993 Oct 15;217(2):597–602. doi: 10.1111/j.1432-1033.1993.tb18282.x. [DOI] [PubMed] [Google Scholar]
  16. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  17. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  18. Güther M. L., de Almeida M. L., Yoshida N., Ferguson M. A. Structural studies on the glycosylphosphatidylinositol membrane anchor of Trypanosoma cruzi 1G7-antigen. The structure of the glycan core. J Biol Chem. 1992 Apr 5;267(10):6820–6828. [PubMed] [Google Scholar]
  19. Hambrey P. N., Forsberg C. M., Mellors A. The phospholipase A1 of Trypanosoma brucei does not release myristate from the variant surface glycoprotein. J Biol Chem. 1986 Mar 5;261(7):3229–3232. [PubMed] [Google Scholar]
  20. Hambrey P. N., Mellors A., Tizard I. R. The phospholipases of pathogenic and non-pathogenic Trypanosoma species. Mol Biochem Parasitol. 1981 Feb;2(3-4):177–186. doi: 10.1016/0166-6851(81)90098-0. [DOI] [PubMed] [Google Scholar]
  21. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  22. Heise N., Raper J., Buxbaum L. U., Peranovich T. M., de Almeida M. L. Identification of complete precursors for the glycosylphosphatidylinositol protein anchors of Trypanosoma cruzi. J Biol Chem. 1996 Jul 12;271(28):16877–16887. doi: 10.1074/jbc.271.28.16877. [DOI] [PubMed] [Google Scholar]
  23. Heise N., de Almeida M. L., Ferguson M. A. Characterization of the lipid moiety of the glycosylphosphatidylinositol anchor of Trypanosoma cruzi 1G7-antigen. Mol Biochem Parasitol. 1995 Mar;70(1-2):71–84. doi: 10.1016/0166-6851(95)00009-p. [DOI] [PubMed] [Google Scholar]
  24. Hereld D., Krakow J. L., Bangs J. D., Hart G. W., Englund P. T. A phospholipase C from Trypanosoma brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. J Biol Chem. 1986 Oct 15;261(29):13813–13819. [PubMed] [Google Scholar]
  25. Liscovitch M. Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci. 1992 Oct;17(10):393–399. doi: 10.1016/0968-0004(92)90007-v. [DOI] [PubMed] [Google Scholar]
  26. Low M. G. Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J. 1989 Mar;3(5):1600–1608. doi: 10.1096/fasebj.3.5.2522071. [DOI] [PubMed] [Google Scholar]
  27. Low M. G., Prasad A. R. A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc Natl Acad Sci U S A. 1988 Feb;85(4):980–984. doi: 10.1073/pnas.85.4.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Masterson W. J., Raper J., Doering T. L., Hart G. W., Englund P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul 13;62(1):73–80. doi: 10.1016/0092-8674(90)90241-6. [DOI] [PubMed] [Google Scholar]
  29. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meldrum E., Parker P. J., Carozzi A. The PtdIns-PLC superfamily and signal transduction. Biochim Biophys Acta. 1991 Mar 19;1092(1):49–71. doi: 10.1016/0167-4889(91)90177-y. [DOI] [PubMed] [Google Scholar]
  31. Reggiori F., Canivenc-Gansel E., Conzelmann A. Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J. 1997 Jun 16;16(12):3506–3518. doi: 10.1093/emboj/16.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reggiori F., Conzelmann A. Biosynthesis of inositol phosphoceramides and remodeling of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae are mediated by different enzymes. J Biol Chem. 1998 Nov 13;273(46):30550–30559. doi: 10.1074/jbc.273.46.30550. [DOI] [PubMed] [Google Scholar]
  33. Rhee S. G., Suh P. G., Ryu S. H., Lee S. Y. Studies of inositol phospholipid-specific phospholipase C. Science. 1989 May 5;244(4904):546–550. doi: 10.1126/science.2541501. [DOI] [PubMed] [Google Scholar]
  34. Schenkman S., Yoshida N., Cardoso de Almeida M. L. Glycophosphatidylinositol-anchored proteins in metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Jun;29(2-3):141–151. doi: 10.1016/0166-6851(88)90069-2. [DOI] [PubMed] [Google Scholar]
  35. Serrano A. A., Schenkman S., Yoshida N., Mehlert A., Richardson J. M., Ferguson M. A. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995 Nov 10;270(45):27244–27253. doi: 10.1074/jbc.270.45.27244. [DOI] [PubMed] [Google Scholar]
  36. Sipos G., Reggiori F., Vionnet C., Conzelmann A. Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J. 1997 Jun 16;16(12):3494–3505. doi: 10.1093/emboj/16.12.3494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Uhrig M. L., Couto A. S., Alves M. J., Colli W., de Lederkremer R. M. Trypanosoma cruzi: nitrogenous-base-containing phosphatides in trypomastigote forms--isolation and chemical analysis. Exp Parasitol. 1997 Sep;87(1):8–19. doi: 10.1006/expr.1997.4181. [DOI] [PubMed] [Google Scholar]
  38. Uhrig M. L., Couto A. S., Colli W., de Lederkremer R. M. Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms. Biochim Biophys Acta. 1996 May 20;1300(3):233–239. doi: 10.1016/0005-2760(96)00021-5. [DOI] [PubMed] [Google Scholar]
  39. Werbovetz K. A., Englund P. T. Glycosyl phosphatidylinositol myristoylation in African trypanosomes. Mol Biochem Parasitol. 1997 Mar;85(1):1–7. doi: 10.1016/s0166-6851(96)02820-4. [DOI] [PubMed] [Google Scholar]
  40. Zingales B., Colli W. Trypanosoma cruzi: interaction with host cells. Curr Top Microbiol Immunol. 1985;117:129–152. doi: 10.1007/978-3-642-70538-0_7. [DOI] [PubMed] [Google Scholar]
  41. de Almeida M. L., Heise N. Proteins anchored via glycosylphosphatidylinositol and solubilizing phospholipases in Trypanosoma cruzi. Biol Res. 1993;26(1-2):285–312. [PubMed] [Google Scholar]
  42. de Lederkremer R. M., Lima C. E., Ramirez M. I., Gonçalvez M. F., Colli W. Hexadecylpalmitoylglycerol or ceramide is linked to similar glycophosphoinositol anchor-like structures in Trypanosoma cruzi. Eur J Biochem. 1993 Dec 15;218(3):929–936. doi: 10.1111/j.1432-1033.1993.tb18449.x. [DOI] [PubMed] [Google Scholar]
  43. de Lederkremer R. M., Lima C., Ramirez M. I., Casal O. L. Structural features of the lipopeptidophosphoglycan from Trypanosoma cruzi common with the glycophosphatidylinositol anchors. Eur J Biochem. 1990 Sep 11;192(2):337–345. doi: 10.1111/j.1432-1033.1990.tb19232.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES