Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 1;345(Pt 1):99–106. doi: 10.1042/bj3450099

Two zebrafish (Danio rerio) antizymes with different expression and activities.

T Saito 1, T Hascilowicz 1, I Ohkido 1, Y Kikuchi 1, H Okamoto 1, S Hayashi 1, Y Murakami 1, S Matsufuji 1
PMCID: PMC1220735  PMID: 10600644

Abstract

Cellular polyamines are regulated by a unique feedback mechanism involving ornithine decarboxylase (ODC) antizyme. The synthesis of mammalian antizyme requires a programmed translational frameshift event induced by polyamines. Antizyme represses ODC, a key enzyme for polyamine synthesis, through accelerating enzyme degradation by the 26 S proteasome. Antizyme also inhibits the cellular uptake of polyamines. In the present study we isolated two distinct zebrafish (Danio rerio) antizyme cDNA clones (AZS and AZL) from an embryonic library. Their sequences revealed that both clones required translational frameshifting for expression. Taking account of +1 frameshifting, AZS and AZL products were 214 and 218 residues long respectively and shared 51.8% amino acid identity. In rabbit reticulocyte lysates, both mRNA species were translated through spermidine-induced frameshifting. The presence of the two antizyme mRNA species in embryos, adult fish and a cultured cell line was confirmed by Northern blot analysis. The ratio of AZS mRNA to AZL mRNA in the adult fish was 1.8-fold higher than in the embryos. Whole-mount hybridization in situ demonstrated that both mRNA species are expressed in every tissue in embryo, but predominantly in the central nervous system and the eyes. Bacterial expression products of both cDNA species inhibited ODC activity, but only the AZS product accelerated ODC degradation in vitro. These results show that both zebrafish antizymes are induced by polyamines but their mRNA species are expressed differently during development. The difference in activities on ODC degradation suggests their functional divergence.

Full Text

The Full Text of this article is available as a PDF (285.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brands J. H., Maassen J. A., van Hemert F. J., Amons R., Möller W. The primary structure of the alpha subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem. 1986 Feb 17;155(1):167–171. doi: 10.1111/j.1432-1033.1986.tb09472.x. [DOI] [PubMed] [Google Scholar]
  2. Drozdowski B., Gong T. W., Lomax M. I. The chicken cDNA for ornithine decarboxylase antizyme. Biochim Biophys Acta. 1998 Mar 4;1396(1):21–26. doi: 10.1016/s0167-4781(97)00162-0. [DOI] [PubMed] [Google Scholar]
  3. Gesteland R. F., Atkins J. F. Recoding: dynamic reprogramming of translation. Annu Rev Biochem. 1996;65:741–768. doi: 10.1146/annurev.bi.65.070196.003521. [DOI] [PubMed] [Google Scholar]
  4. Gesteland R. F., Weiss R. B., Atkins J. F. Recoding: reprogrammed genetic decoding. Science. 1992 Sep 18;257(5077):1640–1641. doi: 10.1126/science.1529352. [DOI] [PubMed] [Google Scholar]
  5. Hayashi S., Murakami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci. 1996 Jan;21(1):27–30. [PubMed] [Google Scholar]
  6. Hayashi T., Matsufuji S., Hayashi S. Characterization of the human antizyme gene. Gene. 1997 Dec 12;203(2):131–139. doi: 10.1016/s0378-1119(97)00504-0. [DOI] [PubMed] [Google Scholar]
  7. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  8. Heller J. S., Fong W. F., Canellakis E. S. Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1858–1862. doi: 10.1073/pnas.73.6.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hietala O. A. Detection of ornithine decarboxylase antizyme in mouse brain. J Neurochem. 1983 Apr;40(4):1174–1177. doi: 10.1111/j.1471-4159.1983.tb08110.x. [DOI] [PubMed] [Google Scholar]
  10. Ichiba T., Matsufuji S., Miyazaki Y., Hayashi S. Nucleotide sequence of ornithine decarboxylase antizyme cDNA from Xenopus laevis. Biochim Biophys Acta. 1995 May 17;1262(1):83–86. doi: 10.1016/0167-4781(95)00062-l. [DOI] [PubMed] [Google Scholar]
  11. Ichiba T., Matsufuji S., Miyazaki Y., Murakami Y., Tanaka K., Ichihara A., Hayashi S. Functional regions of ornithine decarboxylase antizyme. Biochem Biophys Res Commun. 1994 May 16;200(3):1721–1727. doi: 10.1006/bbrc.1994.1651. [DOI] [PubMed] [Google Scholar]
  12. Inoue A., Takahashi M., Hatta K., Hotta Y., Okamoto H. Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev Dyn. 1994 Jan;199(1):1–11. doi: 10.1002/aja.1001990102. [DOI] [PubMed] [Google Scholar]
  13. Ivanov I. P., Gesteland R. F., Atkins J. F. A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics. 1998 Sep 1;52(2):119–129. doi: 10.1006/geno.1998.5434. [DOI] [PubMed] [Google Scholar]
  14. Ivanov I. P., Simin K., Letsou A., Atkins J. F., Gesteland R. F. The Drosophila gene for antizyme requires ribosomal frameshifting for expression and contains an intronic gene for snRNP Sm D3 on the opposite strand. Mol Cell Biol. 1998 Mar;18(3):1553–1561. doi: 10.1128/mcb.18.3.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iwata S., Sato Y., Asada M., Takagi M., Tsujimoto A., Inaba T., Yamada T., Sakamoto S., Yata J., Shimogori T. Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene. 1999 Jan 7;18(1):165–172. doi: 10.1038/sj.onc.1202275. [DOI] [PubMed] [Google Scholar]
  16. Kajiwara K., Nagawawa H., Shimizu-Nishikawa S., Ookuri T., Kimura M., Sugaya E. Molecular characterization of seizure-related genes isolated by differential screening. Biochem Biophys Res Commun. 1996 Feb 27;219(3):795–799. doi: 10.1006/bbrc.1996.0313. [DOI] [PubMed] [Google Scholar]
  17. Kankare K., Uusi-Oukari M., Jänne O. A. Structure, organization and expression of the mouse ornithine decarboxylase antizyme gene. Biochem J. 1997 Jun 15;324(Pt 3):807–813. doi: 10.1042/bj3240807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li X., Coffino P. Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Mol Cell Biol. 1994 Jan;14(1):87–92. doi: 10.1128/mcb.14.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mamroud-Kidron E., Omer-Itsicovich M., Bercovich Z., Tobias K. E., Rom E., Kahana C. A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme. Eur J Biochem. 1994 Dec 1;226(2):547–554. doi: 10.1111/j.1432-1033.1994.tb20079.x. [DOI] [PubMed] [Google Scholar]
  21. Matsufuji S., Matsufuji T., Miyazaki Y., Murakami Y., Atkins J. F., Gesteland R. F., Hayashi S. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell. 1995 Jan 13;80(1):51–60. doi: 10.1016/0092-8674(95)90450-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsufuji S., Matsufuji T., Wills N. M., Gesteland R. F., Atkins J. F. Reading two bases twice: mammalian antizyme frameshifting in yeast. EMBO J. 1996 Mar 15;15(6):1360–1370. [PMC free article] [PubMed] [Google Scholar]
  23. Matsufuji S., Miyazaki Y., Kanamoto R., Kameji T., Murakami Y., Baby T. G., Fujita K., Ohno T., Hayashi S. Analyses of ornithine decarboxylase antizyme mRNA with a cDNA cloned from rat liver. J Biochem. 1990 Sep;108(3):365–371. doi: 10.1093/oxfordjournals.jbchem.a123207. [DOI] [PubMed] [Google Scholar]
  24. Mitchell J. L., Judd G. G., Bareyal-Leyser A., Ling S. Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J. 1994 Apr 1;299(Pt 1):19–22. doi: 10.1042/bj2990019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell J. L., Judd G. G., Leyser A., Choe C. Osmotic stress induces variation in cellular levels of ornithine decarboxylase-antizyme. Biochem J. 1998 Feb 1;329(Pt 3):453–459. doi: 10.1042/bj3290453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miyazaki Y., Matsufuji S., Hayashi S. Cloning and characterization of a rat gene encoding ornithine decarboxylase antizyme. Gene. 1992 Apr 15;113(2):191–197. doi: 10.1016/0378-1119(92)90395-6. [DOI] [PubMed] [Google Scholar]
  27. Murakami Y., Ichiba T., Matsufuji S., Hayashi S. Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J Biol Chem. 1996 Feb 16;271(7):3340–3342. doi: 10.1074/jbc.271.7.3340. [DOI] [PubMed] [Google Scholar]
  28. Murakami Y., Marumo M., Hayashi S. Ornithine decarboxylase antizyme in kidneys of male and female mice. Biochem J. 1988 Sep 1;254(2):367–372. doi: 10.1042/bj2540367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murakami Y., Matsufuji S., Kameji T., Hayashi S., Igarashi K., Tamura T., Tanaka K., Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 1992 Dec 10;360(6404):597–599. doi: 10.1038/360597a0. [DOI] [PubMed] [Google Scholar]
  30. Murakami Y., Matsufuji S., Miyazaki Y., Hayashi S. Forced expression of antizyme abolishes ornithine decarboxylase activity, suppresses cellular levels of polyamines and inhibits cell growth. Biochem J. 1994 Nov 15;304(Pt 1):183–187. doi: 10.1042/bj3040183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murakami Y., Nishiyama M., Hayashi S. Involvement of antizyme in stabilization of ornithine decarboxylase caused by inhibitors of polyamine synthesis. Eur J Biochem. 1989 Mar 1;180(1):181–184. doi: 10.1111/j.1432-1033.1989.tb14630.x. [DOI] [PubMed] [Google Scholar]
  32. Murakami Y., Tanaka K., Matsufuji S., Miyazaki Y., Hayashi S. Antizyme, a protein induced by polyamines, accelerates the degradation of ornithine decarboxylase in Chinese-hamster ovary-cell extracts. Biochem J. 1992 May 1;283(Pt 3):661–664. doi: 10.1042/bj2830661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nilsson J., Koskiniemi S., Persson K., Grahn B., Holm I. Polyamines regulate both transcription and translation of the gene encoding ornithine decarboxylase antizyme in mouse. Eur J Biochem. 1997 Dec 1;250(2):223–231. doi: 10.1111/j.1432-1033.1997.0223a.x. [DOI] [PubMed] [Google Scholar]
  34. Pujic Z., Matsumoto I., Yamataka A., Miyano T., Wilce P. Induction of immediate-early, ornithine decarboxylase and antizyme gene expression in the rat small intestine after transient ischaemia. Life Sci. 1996;58(25):2289–2296. doi: 10.1016/0024-3205(96)00229-9. [DOI] [PubMed] [Google Scholar]
  35. Rinehart C. A., Jr, Chen K. Y. Characterization of the polyamine transport system in mouse neuroblastoma cells. Effects of sodium and system A amino acids. J Biol Chem. 1984 Apr 25;259(8):4750–4756. [PubMed] [Google Scholar]
  36. Rom E., Kahana C. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3959–3963. doi: 10.1073/pnas.91.9.3959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sakata K., Fukuchi-Shimogori T., Kashiwagi K., Igarashi K. Identification of regulatory region of antizyme necessary for the negative regulation of polyamine transport. Biochem Biophys Res Commun. 1997 Sep 18;238(2):415–419. doi: 10.1006/bbrc.1997.7266. [DOI] [PubMed] [Google Scholar]
  38. Salzberg A., Golden K., Bodmer R., Bellen H. J. gutfeeling, a Drosophila gene encoding an antizyme-like protein, is required for late differentiation of neurons and muscles. Genetics. 1996 Sep;144(1):183–196. doi: 10.1093/genetics/144.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Suzuki T., He Y., Kashiwagi K., Murakami Y., Hayashi S., Igarashi K. Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8930–8934. doi: 10.1073/pnas.91.19.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tewari D. S., Qian Y., Thornton R. D., Pieringer J., Taub R., Mochan E., Tewari M. Molecular cloning and sequencing of a human cDNA encoding ornithine decarboxylase antizyme. Biochim Biophys Acta. 1994 Dec 14;1209(2):293–295. doi: 10.1016/0167-4838(94)90199-6. [DOI] [PubMed] [Google Scholar]
  41. Van Steeg H., Van Oostrom C. T., Hodemaekers H. M., Peters L., Thomas A. A. The translation in vitro of rat ornithine decarboxylase mRNA is blocked by its 5' untranslated region in a polyamine-independent way. Biochem J. 1991 Mar 1;274(Pt 2):521–526. doi: 10.1042/bj2740521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yang D., Hayashi H., Takii T., Mizutani Y., Inukai Y., Onozaki K. Interleukin-1-induced growth inhibition of human melanoma cells. Interleukin-1-induced antizyme expression is responsible for ornithine decarboxylase activity down-regulation. J Biol Chem. 1997 Feb 7;272(6):3376–3383. doi: 10.1074/jbc.272.6.3376. [DOI] [PubMed] [Google Scholar]
  43. Zhu C., Lang D. W., Coffino P. Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport. J Biol Chem. 1999 Sep 10;274(37):26425–26430. doi: 10.1074/jbc.274.37.26425. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES