Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 1;345(Pt 1):121–128.

Phosphorylation of the rat pancreatic bile-salt-dependent lipase by casein kinase II is essential for secretion.

E Pasqualini 1, N Caillol 1, A Valette 1, R Lloubes 1, A Verine 1, D Lombardo 1
PMCID: PMC1220738  PMID: 10600647

Abstract

Bile-salt-dependent lipase (BSDL, EC 3.1.1.-) is an enzyme expressed by the pancreatic acinar cells and secreted as a component of the pancreatic juice of all examined species. During its secretion route BSDL is associated with intracellular membranes. This association allows the complete glycosylation of the enzyme or participates in the inhibition of the enzyme activity, which can deleterious for the acinar pancreatic cell. Thereafter, the human BSDL is phosphorylated by a serine/threonine protein kinase and released from intracellular membranes. In the present study, we show that the rat pancreatic BSDL, expressed by AR4-2J cells used as a model, is phosphorylated by a protein kinase that is insensitive to inhibitors of protein kinases A, C or G and that the phosphorylation process is favoured by okadaic acid (an inhibitor of protein phosphatases 1 and 2A). However, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), which is a specific inhibitor of casein kinase II, abolishes the phosphorylation in vitro of BSDL within micro- somes of AR4-2J pancreatic cells. We showed further that the alpha-subunit of casein kinase II co-locates with BSDL within the lumenal compartment of the Golgi. Genistein, which perturbs the trans-Golgi network, also inhibits the phosphorylation of BSDL, suggesting that this post-translational modification of BSDL probably occurred within this cell compartment. The inhibition of the phosphorylation of BSDL by DRB also decreases the rate at which the enzyme is secreted. Under the same conditions, the rate of alpha-amylase secretion was not modified. These data strongly suggest that phosphorylation is a post-translational event, which appears to be essential for the secretion of BSDL.

Full Text

The Full Text of this article is available as a PDF (215.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abouakil N., Mas E., Bruneau N., Benajiba A., Lombardo D. Bile salt-dependent lipase biosynthesis in rat pancreatic AR 4-2 J cells. Essential requirement of N-linked oligosaccharide for secretion and expression of a fully active enzyme. J Biol Chem. 1993 Dec 5;268(34):25755–25763. [PubMed] [Google Scholar]
  2. Abouakil N., Rogalska E., Bonicel J., Lombardo D. Purification of pancreatic carboxylic-ester hydrolase by immunoaffinity and its application to the human bile-salt-stimulated lipase. Biochim Biophys Acta. 1988 Aug 12;961(3):299–308. doi: 10.1016/0005-2760(88)90077-x. [DOI] [PubMed] [Google Scholar]
  3. Austin C. D., Shields D. Formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors. J Cell Biol. 1996 Dec;135(6 Pt 1):1471–1483. doi: 10.1083/jcb.135.6.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Booth C., Koch G. L. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell. 1989 Nov 17;59(4):729–737. doi: 10.1016/0092-8674(89)90019-6. [DOI] [PubMed] [Google Scholar]
  5. Bruneau N., Lombardo D., Bendayan M. Participation of GRP94-related protein in secretion of pancreatic bile salt-dependent lipase and in its internalization by the intestinal epithelium. J Cell Sci. 1998 Sep;111(Pt 17):2665–2679. doi: 10.1242/jcs.111.17.2665. [DOI] [PubMed] [Google Scholar]
  6. Bruneau N., Lombardo D. Chaperone function of a Grp 94-related protein for folding and transport of the pancreatic bile salt-dependent lipase. J Biol Chem. 1995 Jun 2;270(22):13524–13533. doi: 10.1074/jbc.270.22.13524. [DOI] [PubMed] [Google Scholar]
  7. Bruneau N., Nganga A., Fisher E. A., Lombardo D. O-Glycosylation of C-terminal tandem-repeated sequences regulates the secretion of rat pancreatic bile salt-dependent lipase. J Biol Chem. 1997 Oct 24;272(43):27353–27361. doi: 10.1074/jbc.272.43.27353. [DOI] [PubMed] [Google Scholar]
  8. Bruneau N., de la Porte P. L., Sbarra V., Lombardo D. Association of bile-salt-dependent lipase with membranes of human pancreatic microsomes. Eur J Biochem. 1995 Oct 1;233(1):209–218. doi: 10.1111/j.1432-1033.1995.209_1.x. [DOI] [PubMed] [Google Scholar]
  9. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  10. Cala S. E., Jones L. R. GRP94 resides within cardiac sarcoplasmic reticulum vesicles and is phosphorylated by casein kinase II. J Biol Chem. 1994 Feb 25;269(8):5926–5931. [PubMed] [Google Scholar]
  11. Clairmont C. A., De Maio A., Hirschberg C. B. Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94. J Biol Chem. 1992 Feb 25;267(6):3983–3990. [PubMed] [Google Scholar]
  12. Colley K. J. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology. 1997 Feb;7(1):1–13. doi: 10.1093/glycob/7.1.1-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Csermely P., Miyata Y., Schnaider T., Yahara I. Autophosphorylation of grp94 (endoplasmin). J Biol Chem. 1995 Mar 17;270(11):6381–6388. doi: 10.1074/jbc.270.11.6381. [DOI] [PubMed] [Google Scholar]
  14. Csermely P., Schnaider T., Soti C., Prohászka Z., Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 1998 Aug;79(2):129–168. doi: 10.1016/s0163-7258(98)00013-8. [DOI] [PubMed] [Google Scholar]
  15. Edelman A. M., Blumenthal D. K., Krebs E. G. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613. doi: 10.1146/annurev.bi.56.070187.003031. [DOI] [PubMed] [Google Scholar]
  16. Gjellesvik D. R., Lombardo D., Walther B. T. Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta. 1992 Mar 4;1124(2):123–134. doi: 10.1016/0005-2760(92)90088-d. [DOI] [PubMed] [Google Scholar]
  17. Goldberg E. Amino acid composition and properties of crystalline lactate dehydrogenase X from mouse testes. J Biol Chem. 1972 Apr 10;247(7):2044–2048. [PubMed] [Google Scholar]
  18. Hathaway G. M., Traugh J. A. Casein kinases--multipotential protein kinases. Curr Top Cell Regul. 1982;21:101–127. [PubMed] [Google Scholar]
  19. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Le Petit-Thevenin J., Bruneau N., Nobili O., Lombardo D., Vérine A. An intracellular role for pancreatic bile salt-dependent lipase: evidence for modification of lipid turnover in transfected CHO cells. Biochim Biophys Acta. 1998 Aug 28;1393(2-3):307–316. doi: 10.1016/s0005-2760(98)00085-x. [DOI] [PubMed] [Google Scholar]
  23. Lombardo D., Guy O., Figarella C. Purification and characterization of a carboxyl ester hydrolase from human pancreatic juice. Biochim Biophys Acta. 1978 Nov 10;527(1):142–149. doi: 10.1016/0005-2744(78)90263-2. [DOI] [PubMed] [Google Scholar]
  24. Lombardo D., Guy O. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim Biophys Acta. 1980 Jan 11;611(1):147–155. doi: 10.1016/0005-2744(80)90050-9. [DOI] [PubMed] [Google Scholar]
  25. Mas E., Abouakil N., Roudani S., Franc J. L., Montreuil J., Lombardo D. Variation of the glycosylation of human pancreatic bile-salt-dependent lipase. Eur J Biochem. 1993 Sep 15;216(3):807–812. doi: 10.1111/j.1432-1033.1993.tb18201.x. [DOI] [PubMed] [Google Scholar]
  26. Mas E., Abouakil N., Roudani S., Miralles F., Guy-Crotte O., Figarella C., Escribano M. J., Lombardo D. Human fetoacinar pancreatic protein: an oncofetal glycoform of the normally secreted pancreatic bile-salt-dependent lipase. Biochem J. 1993 Jan 15;289(Pt 2):609–615. doi: 10.1042/bj2890609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mas E., Crotte C., Lecestre D., Michalski J. C., Escribano M. J., Lombardo D., Sadoulet M. O. The oncofetal J28 epitope involves fucosylated O-linked oligosaccharide structures of the fetoacinar pancreatic protein. Glycobiology. 1997 Sep;7(6):745–752. doi: 10.1093/glycob/7.6.745. [DOI] [PubMed] [Google Scholar]
  28. Panicot L., Mas E., Pasqualini E., Zerfaoui M., Lombardo D., Sadoulet M. O., El Battari A. The formation of the oncofetal J28 glycotope involves core-2 beta6-N-acetylglucosaminyltransferase and alpha3/4-fucosyltransferase activities. Glycobiology. 1999 Sep;9(9):935–946. doi: 10.1093/glycob/9.9.935. [DOI] [PubMed] [Google Scholar]
  29. Pasqualini E., Caillol N., Mas E., Bruneau N., Lexa D., Lombardo D. Association of bile-salt-dependent lipase with membranes of human pancreatic microsomes is under the control of ATP and phosphorylation. Biochem J. 1997 Oct 15;327(Pt 2):527–535. doi: 10.1042/bj3270527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pasqualini E., Caillol N., Panicot L., Mas E., Lloubes R., Lombardo D. Molecular cloning of the oncofetal isoform of the human pancreatic bile salt-dependent lipase. J Biol Chem. 1998 Oct 23;273(43):28208–28218. doi: 10.1074/jbc.273.43.28208. [DOI] [PubMed] [Google Scholar]
  31. Penner C. G., Wang Z., Litchfield D. W. Expression and localization of epitope-tagged protein kinase CK2. J Cell Biochem. 1997 Mar 15;64(4):525–537. [PubMed] [Google Scholar]
  32. Poola I., Kiang J. G. The estrogen-inducible transferrin receptor-like membrane glycoprotein is related to stress-regulated proteins. J Biol Chem. 1994 Aug 26;269(34):21762–21769. [PubMed] [Google Scholar]
  33. Ramakrishnan M., Schönthal A. H., Lee A. S. Endoplasmic reticulum stress-inducible protein GRP94 is associated with an Mg2+-dependent serine kinase activity modulated by Ca2+ and GRP78/BiP. J Cell Physiol. 1997 Feb;170(2):115–129. doi: 10.1002/(SICI)1097-4652(199702)170:2<115::AID-JCP3>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  34. Reue K., Zambaux J., Wong H., Lee G., Leete T. H., Ronk M., Shively J. E., Sternby B., Borgström B., Ameis D. cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res. 1991 Feb;32(2):267–276. [PubMed] [Google Scholar]
  35. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  36. Sarrouilhe D., Filhol O., Leroy D., Bonello G., Baudry M., Chambaz E. M., Cochet C. The tight association of protein kinase CK2 with plasma membranes is mediated by a specific domain of its regulatory beta-subunit. Biochim Biophys Acta. 1998 Jun 22;1403(2):199–210. doi: 10.1016/s0167-4889(98)00038-x. [DOI] [PubMed] [Google Scholar]
  37. Sfeir C., Veis A. Casein kinase localization in the endoplasmic reticulum of the ROS 17/2.8 cell line. J Bone Miner Res. 1995 Apr;10(4):607–615. doi: 10.1002/jbmr.5650100414. [DOI] [PubMed] [Google Scholar]
  38. Shi Y., Brown E. D., Walsh C. T. Expression of recombinant human casein kinase II and recombinant heat shock protein 90 in Escherichia coli and characterization of their interactions. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2767–2771. doi: 10.1073/pnas.91.7.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sugo T., Mas E., Abouakil N., Endo T., Escribano M. J., Kobata A., Lombardo D. The structure of N-linked oligosaccharides of human pancreatic bile-salt-dependent lipase. Eur J Biochem. 1993 Sep 15;216(3):799–805. doi: 10.1111/j.1432-1033.1993.tb18200.x. [DOI] [PubMed] [Google Scholar]
  40. Swift L. L. Role of the Golgi apparatus in the phosphorylation of apolipoprotein B. J Biol Chem. 1996 Dec 6;271(49):31491–31495. [PubMed] [Google Scholar]
  41. Takemoto H., Yoshimori T., Yamamoto A., Miyata Y., Yahara I., Inoue K., Tashiro Y. Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys. 1992 Jul;296(1):129–136. doi: 10.1016/0003-9861(92)90554-a. [DOI] [PubMed] [Google Scholar]
  42. Wang C. S., Dashti A., Jackson K. W., Yeh J. C., Cummings R. D., Tang J. Isolation and characterization of human milk bile salt-activated lipase C-tail fragment. Biochemistry. 1995 Aug 22;34(33):10639–10644. doi: 10.1021/bi00033a039. [DOI] [PubMed] [Google Scholar]
  43. Wang C. S., Johnson K. Purification of human milk bile salt-activated lipase. Anal Biochem. 1983 Sep;133(2):457–461. doi: 10.1016/0003-2697(83)90108-2. [DOI] [PubMed] [Google Scholar]
  44. Zandomeni R., Weinmann R. Inhibitory effect of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole on a protein kinase. J Biol Chem. 1984 Dec 10;259(23):14804–14811. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES