Abstract
The alcohol dehydrogenase (ADH) activity of human short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) has been characterized kinetically. The k(cat) of the purified enzyme was estimated to be 2. 2 min(-1), with apparent K(m) values of 280 mM and 22microM for 2-propanol and NAD(+), respectively. The k(cat) of the ADH activity was three orders of magnitude less than the l-3-hydroxyacyl-CoA dehydrogenase activity but was comparable with that of the enzyme's hydroxysteroid dehydrogenase (HSD) activity for oxidizing 17beta-oestradiol [He, Merz, Mehta, Schulz and Yang (1999) J. Biol. Chem. 274, 15014-15019]. However, the k(cat) values of intrinsic ADH and HSD activities of human SCHAD were found to be two orders of magnitude less than those reported for endoplasmic-reticulum-associated amyloid beta-peptide-binding protein (ERAB) [Yan, Shi, Zhu, Fu, Zhu, Zhu, Gibson, Stern, Collison, Al-Mohanna et al. (1999) J. Biol. Chem. 274, 2145-2156]. Since human SCHAD and ERAB apparently possess identical amino acid sequences, their catalytic properties should be identical. The recombinant SCHAD has been confirmed to be the right gene product and not a mutant variant. Steady-state kinetic measurements and quantitative analyses reveal that assay conditions such as pH and concentrations of coenzyme and substrate do not account for the kinetic differences reported for ERAB and SCHAD. Rather problematic experimental procedures appear to be responsible for the unrealistically high catalytic rate constants of ERAB. Eliminating the confusion surrounding the catalytic properties of this important multifunctional enzyme paves the way for exploring its role(s) in the pathogenesis of Alzheimer's disease.
Full Text
The Full Text of this article is available as a PDF (97.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binstock J. F., Schulz H. Fatty acid oxidation complex from Escherichia coli. Methods Enzymol. 1981;71(Pt 100):403–411. doi: 10.1016/0076-6879(81)71051-6. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chen Z., Jiang J. C., Lin Z. G., Lee W. R., Baker M. E., Chang S. H. Site-specific mutagenesis of Drosophila alcohol dehydrogenase: evidence for involvement of tyrosine-152 and lysine-156 in catalysis. Biochemistry. 1993 Apr 6;32(13):3342–3346. doi: 10.1021/bi00064a017. [DOI] [PubMed] [Google Scholar]
- Furuta S., Kobayashi A., Miyazawa S., Hashimoto T. Cloning and expression of cDNA for a newly identified isozyme of bovine liver 3-hydroxyacyl-CoA dehydrogenase and its import into mitochondria. Biochim Biophys Acta. 1997 Feb 28;1350(3):317–324. doi: 10.1016/s0167-4781(96)00171-6. [DOI] [PubMed] [Google Scholar]
- He X. Y., Merz G., Mehta P., Schulz H., Yang S. Y. Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme. Characterization of a novel 17beta-hydroxysteroid dehydrogenase. J Biol Chem. 1999 May 21;274(21):15014–15019. doi: 10.1074/jbc.274.21.15014. [DOI] [PubMed] [Google Scholar]
- He X. Y., Schulz H., Yang S. Y. A human brain L-3-hydroxyacyl-coenzyme A dehydrogenase is identical to an amyloid beta-peptide-binding protein involved in Alzheimer's disease. J Biol Chem. 1998 Apr 24;273(17):10741–10746. doi: 10.1074/jbc.273.17.10741. [DOI] [PubMed] [Google Scholar]
- He X. Y., Yang S. Y. Molecular cloning, expression in Escherichia coli, and characterization of a novel L-3-hydroxyacyl coenzyme A dehydrogenase from pig liver. Biochim Biophys Acta. 1998 May 20;1392(1):119–126. doi: 10.1016/s0005-2760(98)00031-9. [DOI] [PubMed] [Google Scholar]
- He X. Y., Zhang G., Blecha F., Yang S. Y. Identity of heart and liver L-3-hydroxyacyl coenzyme A dehydrogenase. Biochim Biophys Acta. 1999 Feb 25;1437(2):119–123. doi: 10.1016/s1388-1981(98)00005-5. [DOI] [PubMed] [Google Scholar]
- Leenders F., Tesdorpf J. G., Markus M., Engel T., Seedorf U., Adamski J. Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities. J Biol Chem. 1996 Mar 8;271(10):5438–5442. doi: 10.1074/jbc.271.10.5438. [DOI] [PubMed] [Google Scholar]
- Oppermann U. C., Filling C., Berndt K. D., Persson B., Benach J., Ladenstein R., Jörnvall H. Active site directed mutagenesis of 3 beta/17 beta-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry. 1997 Jan 7;36(1):34–40. doi: 10.1021/bi961803v. [DOI] [PubMed] [Google Scholar]
- Oppermann U. C., Salim S., Tjernberg L. O., Terenius L., Jörnvall H. Binding of amyloid beta-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer's disease. FEBS Lett. 1999 May 28;451(3):238–242. doi: 10.1016/s0014-5793(99)00586-4. [DOI] [PubMed] [Google Scholar]
- Plapp B. V. Site-directed mutagenesis: a tool for studying enzyme catalysis. Methods Enzymol. 1995;249:91–119. doi: 10.1016/0076-6879(95)49032-9. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoffel-Wagner B., Watzka M., Steckelbroeck S., Schramm J., Bidlingmaier J. F., Klingmüller D. Expression of 17beta-hydroxysteroid dehydrogenase types 1, 2, 3 and 4 in the human temporal lobe. J Endocrinol. 1999 Jan;160(1):119–126. doi: 10.1677/joe.0.1600119. [DOI] [PubMed] [Google Scholar]
- Strickler J. E., Hunkapiller M. W., Wilson K. J. Utility of the gas-phase sequencer for both liquid- and solid-phase degradation of proteins and peptides at low picomole levels. Anal Biochem. 1984 Aug 1;140(2):553–566. doi: 10.1016/0003-2697(84)90207-0. [DOI] [PubMed] [Google Scholar]
- Wozniak A., Hutchison R. E., Morris C. M., Hutchison J. B. Neuroblastoma and Alzheimer's disease brain cells contain aromatase activity. Steroids. 1998 May-Jun;63(5-6):263–267. doi: 10.1016/s0039-128x(98)00029-4. [DOI] [PubMed] [Google Scholar]
- Yan S. D., Fu J., Soto C., Chen X., Zhu H., Al-Mohanna F., Collison K., Zhu A., Stern E., Saido T. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease. Nature. 1997 Oct 16;389(6652):689–695. doi: 10.1038/39522. [DOI] [PubMed] [Google Scholar]
- Yan S. D., Shi Y., Zhu A., Fu J., Zhu H., Zhu Y., Gibson L., Stern E., Collison K., Al-Mohanna F. Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity. J Biol Chem. 1999 Jan 22;274(4):2145–2156. doi: 10.1074/jbc.274.4.2145. [DOI] [PubMed] [Google Scholar]
- Yang S. Y., He X. Y. Molecular mechanisms of fatty acid beta-oxidation enzyme catalysis. Adv Exp Med Biol. 1999;466:133–143. doi: 10.1007/0-306-46818-2_15. [DOI] [PubMed] [Google Scholar]
- Yang Z. H., Bobin S., Krakow J. S. Characterization of the CRPCY core formed after treatment with carboxypeptidase Y. Nucleic Acids Res. 1991 Aug 11;19(15):4253–4257. doi: 10.1093/nar/19.15.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwain I. H., Yen S. S., Cheng C. Y. Astrocytes cultured in vitro produce estradiol-17beta and express aromatase cytochrome P-450 (P-450 AROM) mRNA. Biochim Biophys Acta. 1997 Mar 15;1334(2-3):338–348. doi: 10.1016/s0304-4165(96)00115-8. [DOI] [PubMed] [Google Scholar]