Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):233–238.

Distinct signalling pathways mediate the cAMP response element (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor.

K Freeland 1, Y Z Liu 1, D S Latchman 1
PMCID: PMC1220751  PMID: 10620499

Abstract

The gene encoding the calcitonin gene-related peptide (CGRP) is activated in neuronal cells by treatment with cAMP and nerve growth factor (NGF). Both stimuli induce the phosphorylation of the cAMP response element (CRE)-binding protein (CREB) transcription factor on Ser-133 and require the CRE in the CGRP promoter to stimulate transcription. However, whereas the CRE is necessary and sufficient for promoter activation by cAMP, it is necessary but not sufficient for activation by NGF. We show that this difference is paralleled by a difference in the signalling pathways which are required for each stimulus to activate the CGRP promoter. Thus whilst cAMP-mediated activation requires the protein kinase A pathway, NGF-mediated stimulation requires the Ras/Raf mitogen-activated protein kinase kinase-1 (MEK-1)/p42/p44 mitogen-activated protein kinase (MAPK) pathway. Although NGF can activate the protein kinase C, p38 MAPK and c-Jun N-terminal kinase (JNK) pathways, these pathways are not involved in its effect on the CGRP promoter. The effect of the p42/p44 MAPK pathway on CREB and associated transcription factors, and the manner in which this results in activation of the CGRP promoter is discussed.

Full Text

The Full Text of this article is available as a PDF (169.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., Evans R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982 Jul 15;298(5871):240–244. doi: 10.1038/298240a0. [DOI] [PubMed] [Google Scholar]
  2. Ball D. W., Compton D., Nelkin B. D., Baylin S. B., de Bustros A. Human calcitonin gene regulation by helix-loop-helix recognition sequences. Nucleic Acids Res. 1992 Jan 11;20(1):117–123. doi: 10.1093/nar/20.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonni A., Ginty D. D., Dudek H., Greenberg M. E. Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci. 1995 Apr;6(2):168–183. doi: 10.1006/mcne.1995.1015. [DOI] [PubMed] [Google Scholar]
  4. Chrivia J. C., Kwok R. P., Lamb N., Hagiwara M., Montminy M. R., Goodman R. H. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993 Oct 28;365(6449):855–859. doi: 10.1038/365855a0. [DOI] [PubMed] [Google Scholar]
  5. Cowley S., Paterson H., Kemp P., Marshall C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994 Jun 17;77(6):841–852. doi: 10.1016/0092-8674(94)90133-3. [DOI] [PubMed] [Google Scholar]
  6. Crenshaw E. B., 3rd, Russo A. F., Swanson L. W., Rosenfeld M. G. Neuron-specific alternative RNA processing in transgenic mice expressing a metallothionein-calcitonin fusion gene. Cell. 1987 May 8;49(3):389–398. doi: 10.1016/0092-8674(87)90291-1. [DOI] [PubMed] [Google Scholar]
  7. Deak M., Clifton A. D., Lucocq L. M., Alessi D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998 Aug 3;17(15):4426–4441. doi: 10.1093/emboj/17.15.4426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ginty D. D., Bonni A., Greenberg M. E. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell. 1994 Jun 3;77(5):713–725. doi: 10.1016/0092-8674(94)90055-8. [DOI] [PubMed] [Google Scholar]
  10. Ginty D. D., Glowacka D., DeFranco C., Wagner J. A. Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J Biol Chem. 1991 Aug 15;266(23):15325–15333. [PubMed] [Google Scholar]
  11. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Impey S., Obrietan K., Wong S. T., Poser S., Yano S., Wayman G., Deloulme J. C., Chan G., Storm D. R. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 1998 Oct;21(4):869–883. doi: 10.1016/s0896-6273(00)80602-9. [DOI] [PubMed] [Google Scholar]
  13. Kwok R. P., Lundblad J. R., Chrivia J. C., Richards J. P., Bächinger H. P., Brennan R. G., Roberts S. G., Green M. R., Goodman R. H. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature. 1994 Jul 21;370(6486):223–226. doi: 10.1038/370223a0. [DOI] [PubMed] [Google Scholar]
  14. Lalli E., Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem. 1994 Jul 1;269(26):17359–17362. [PubMed] [Google Scholar]
  15. Lanigan T. M., Tverberg L. A., Russo A. F. Retinoic acid repression of cell-specific helix-loop-helix-octamer activation of the calcitonin/calcitonin gene-related peptide enhancer. Mol Cell Biol. 1993 Oct;13(10):6079–6088. doi: 10.1128/mcb.13.10.6079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lavoie J. N., L'Allemain G., Brunet A., Müller R., Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996 Aug 23;271(34):20608–20616. doi: 10.1074/jbc.271.34.20608. [DOI] [PubMed] [Google Scholar]
  17. Leff S. E., Evans R. M., Rosenfeld M. G. Splice commitment dictates neuron-specific alternative RNA processing in calcitonin/CGRP gene expression. Cell. 1987 Feb 13;48(3):517–524. doi: 10.1016/0092-8674(87)90202-9. [DOI] [PubMed] [Google Scholar]
  18. Lenormand P., Sardet C., Pagès G., L'Allemain G., Brunet A., Pouysségur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993 Sep;122(5):1079–1088. doi: 10.1083/jcb.122.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lindsay R. M., Harmar A. J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature. 1989 Jan 26;337(6205):362–364. doi: 10.1038/337362a0. [DOI] [PubMed] [Google Scholar]
  20. Lindsay R. M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci. 1988 Jul;8(7):2394–2405. doi: 10.1523/JNEUROSCI.08-07-02394.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu Y. Z., Chrivia J. C., Latchman D. S. Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade. J Biol Chem. 1998 Dec 4;273(49):32400–32407. doi: 10.1074/jbc.273.49.32400. [DOI] [PubMed] [Google Scholar]
  22. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  23. Maurer R. A. Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J Biol Chem. 1989 Apr 25;264(12):6870–6873. [PubMed] [Google Scholar]
  24. Nguyen T. T., Scimeca J. C., Filloux C., Peraldi P., Carpentier J. L., Van Obberghen E. Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J Biol Chem. 1993 May 5;268(13):9803–9810. [PubMed] [Google Scholar]
  25. Rosenfeld M. G., Amara S. G., Evans R. M. Alternative RNA processing: determining neuronal phenotype. Science. 1984 Sep 21;225(4668):1315–1320. doi: 10.1126/science.6089345. [DOI] [PubMed] [Google Scholar]
  26. Rosenfeld M. G., Mermod J. J., Amara S. G., Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W., Evans R. M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983 Jul 14;304(5922):129–135. doi: 10.1038/304129a0. [DOI] [PubMed] [Google Scholar]
  27. Schubert D., Heinemann S., Kidokoro Y. Cholinergic metabolism and synapse formation by a rat nerve cell line. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2579–2583. doi: 10.1073/pnas.74.6.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stolarsky-Fredman L., Leff S. E., Klein E. S., Crenshaw E. B., 3rd, Yeakley J., Rosenfeld M. G. A tissue-specific enhancer in the rat-calcitonin/CGRP gene is active in both neural and endocrine cell types. Mol Endocrinol. 1990 Mar;4(3):497–504. doi: 10.1210/mend-4-3-497. [DOI] [PubMed] [Google Scholar]
  29. Sun P., Enslen H., Myung P. S., Maurer R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994 Nov 1;8(21):2527–2539. doi: 10.1101/gad.8.21.2527. [DOI] [PubMed] [Google Scholar]
  30. Symes A. J., Craig R. K., Brickell P. M. Loss of transcriptional repression contributes to the ectopic expression of the calcitonin/alpha-CGRP gene in a human lung carcinoma cell line. FEBS Lett. 1992 Jul 20;306(2-3):229–233. doi: 10.1016/0014-5793(92)81006-8. [DOI] [PubMed] [Google Scholar]
  31. Tverberg L. A., Russo A. F. Cell-specific glucocorticoid repression of calcitonin/calcitonin gene-related peptide transcription. Localization to an 18-base pair basal enhancer element. J Biol Chem. 1992 Sep 5;267(25):17567–17573. [PubMed] [Google Scholar]
  32. Watson A., Ensor E., Symes A., Winter J., Kendall G., Latchman D. A minimal CGRP gene promoter is inducible by nerve growth factor in adult rat dorsal root ganglion neurons but not in PC12 phaeochromocytoma cells. Eur J Neurosci. 1995 Mar 1;7(3):394–400. doi: 10.1111/j.1460-9568.1995.tb00335.x. [DOI] [PubMed] [Google Scholar]
  33. Watson A., Latchman D. The cyclic AMP response element in the calcitonin/calcitonin gene-related peptide gene promoter is necessary but not sufficient for its activation by nerve growth factor. J Biol Chem. 1995 Apr 21;270(16):9655–9660. doi: 10.1074/jbc.270.16.9655. [DOI] [PubMed] [Google Scholar]
  34. Xing J., Ginty D. D., Greenberg M. E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996 Aug 16;273(5277):959–963. doi: 10.1126/science.273.5277.959. [DOI] [PubMed] [Google Scholar]
  35. Xing J., Kornhauser J. M., Xia Z., Thiele E. A., Greenberg M. E. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol. 1998 Apr;18(4):1946–1955. doi: 10.1128/mcb.18.4.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yao H., York R. D., Misra-Press A., Carr D. W., Stork P. J. The cyclic adenosine monophosphate-dependent protein kinase (PKA) is required for the sustained activation of mitogen-activated kinases and gene expression by nerve growth factor. J Biol Chem. 1998 Apr 3;273(14):8240–8247. doi: 10.1074/jbc.273.14.8240. [DOI] [PubMed] [Google Scholar]
  37. York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McCleskey E. W., Stork P. J. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature. 1998 Apr 9;392(6676):622–626. doi: 10.1038/33451. [DOI] [PubMed] [Google Scholar]
  38. de Bustros A., Lee R. Y., Compton D., Tsong T. Y., Baylin S. B., Nelkin B. D. Differential utilization of calcitonin gene regulatory DNA sequences in cultured lines of medullary thyroid carcinoma and small-cell lung carcinoma. Mol Cell Biol. 1990 Apr;10(4):1773–1778. doi: 10.1128/mcb.10.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES