Abstract
With the use of a [(3)H]ryanodine binding assay, the modulation of skeletal muscle ryanodine receptor (RyR1) by Zn(2+) was investigated. In the presence of 100 microM free Ca(2+) concentration ([Ca(2+)](f)) as activator, the equilibrium [(3)H]ryanodine binding to heavy sarcoplasmic reticulum vesicles was biphasically modulated by Zn(2+). The binding was increased by a free Zn(2+) concentration ([Zn(2+)](f)) of less than 1 microM; a peak binding, approx. 140% of the control (without added Zn(2+)) was obtained at 0.3 microM [Zn(2+)](f). An inhibitory effect of Zn(2+) became obvious with a [Zn(2+)](f) of more than 1 microM; the [Zn(2+)](f) for producing half inhibition was 2.7+/-0.5 microM (mean+/-S.D.). Scatchard analysis indicated that the increase in the binding induced by low [Zn(2+)](f) was due to a decrease in K(d), whereas both an increase in K(d) and a possible decrease in B(max) were responsible for the decrease in binding induced by high [Zn(2+)](f). The binding in the presence of micromolar [Zn(2+)](f) showed a biphasic time course. In the presence of 3 microM [Zn(2+)](f), after reaching a peak with an increased rate of initial binding, the binding gradually declined. The decline phase could be prevented by decreasing [Zn(2+)](f) to 0.5 microM or by adding 2 mM dithiothreitol, a thiol-reducing agent. The [Ca(2+)](f) dependence of binding was changed significantly by Zn(2+), whereas Ca(2+) had no clear effect on the [Zn(2+)](f) dependence of binding. Moreover, some interactions were found in the effects between Zn(2+) and other RyR1 modulators. It is indicated that Zn(2+) can modulate the activation sites and inactivation sites for Ca(2+) on RyR1. The physiological significance of the effects of Zn(2+) on ryanodine binding is discussed.
Full Text
The Full Text of this article is available as a PDF (171.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson J. J., Trimm J. L., Weden L., Salama G. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1526–1530. doi: 10.1073/pnas.80.6.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aghdasi B., Zhang J. Z., Wu Y., Reid M. B., Hamilton S. L. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J Biol Chem. 1997 Feb 7;272(6):3739–3748. doi: 10.1074/jbc.272.6.3739. [DOI] [PubMed] [Google Scholar]
- Berg J. M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996 Feb 23;271(5252):1081–1085. doi: 10.1126/science.271.5252.1081. [DOI] [PubMed] [Google Scholar]
- Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Canzoniero L. M., Sensi S. L., Choi D. W. Measurement of intracellular free zinc in living neurons. Neurobiol Dis. 1997;4(3-4):275–279. doi: 10.1006/nbdi.1997.0160. [DOI] [PubMed] [Google Scholar]
- Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
- Liu W., Pasek D. A., Meissner G. Modulation of Ca(2+)-gated cardiac muscle Ca(2+)-release channel (ryanodine receptor) by mono- and divalent ions. Am J Physiol. 1998 Jan;274(1 Pt 1):C120–C128. doi: 10.1152/ajpcell.1998.274.1.C120. [DOI] [PubMed] [Google Scholar]
- Ma J. Desensitization of the skeletal muscle ryanodine receptor: evidence for heterogeneity of calcium release channels. Biophys J. 1995 Mar;68(3):893–899. doi: 10.1016/S0006-3495(95)80265-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G., Rios E., Tripathy A., Pasek D. A. Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem. 1997 Jan 17;272(3):1628–1638. doi: 10.1074/jbc.272.3.1628. [DOI] [PubMed] [Google Scholar]
- Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
- Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
- Nasu T. Zinc ions block the intracellular calcium release induced by caffeine in guinea-pig taenia caeci. Experientia. 1995 Feb 15;51(2):113–116. doi: 10.1007/BF01929351. [DOI] [PubMed] [Google Scholar]
- Nelbach M. E., Pigiet V. P., Jr, Gerhart J. C., Schachman H. K. A role for zinc in the quaternary structure of aspartate transcarbamylase from Escherichia coli. Biochemistry. 1972 Feb 1;11(3):315–327. doi: 10.1021/bi00753a002. [DOI] [PubMed] [Google Scholar]
- Pessah I. N., Stambuk R. A., Casida J. E. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides. Mol Pharmacol. 1987 Mar;31(3):232–238. [PubMed] [Google Scholar]
- Somers W., Ultsch M., De Vos A. M., Kossiakoff A. A. The X-ray structure of a growth hormone-prolactin receptor complex. Nature. 1994 Dec 1;372(6505):478–481. doi: 10.1038/372478a0. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Falchuk K. H. The biochemical basis of zinc physiology. Physiol Rev. 1993 Jan;73(1):79–118. doi: 10.1152/physrev.1993.73.1.79. [DOI] [PubMed] [Google Scholar]
- Zable A. C., Favero T. G., Abramson J. J. Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J Biol Chem. 1997 Mar 14;272(11):7069–7077. doi: 10.1074/jbc.272.11.7069. [DOI] [PubMed] [Google Scholar]