Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):287–296.

Endolyn is a mucin-like type I membrane protein targeted to lysosomes by its cytoplasmic tail.

G Ihrke 1, S R Gray 1, J P Luzio 1
PMCID: PMC1220758  PMID: 10620506

Abstract

Endolyn (endolyn-78) is a membrane protein found in lysosomal and endosomal compartments of mammalian cells. Unlike 'classical' lysosomal membrane proteins, such as lysosome-associated membrane protein (lamp)-1, it is also present in a subapical compartment in polarized WIF-B hepatocytes. The structural features that determine sorting of endolyn are unknown. We have identified a rat endolyn cDNA by expression screening. The cDNA encodes a ubiquitously expressed type I membrane protein with a short cytoplasmic tail of 13 amino acids and many putative sites for N- and O-linked glycosylation in the predicted luminal domain. Endolyn is closely related to two human mucin-like proteins, multi-glycosylated core protein (MGC)-24 and CD164 (MGC-24v), expressed in gastric carcinoma cells and bone marrow stromal and haematopoietic precursor cells respectively. The predicted transmembrane and cytoplasmic tail domains of endolyn, as well as parts of its luminal domain, also show some similarities with lamp-1 and lamp-2. Like these and other known lysosomal membrane proteins, endolyn contains a YXXO motif at the C-terminus of its cytoplasmic tail (where O is a bulky hydrophobic amino acid), but with no preceding glycine. Nonetheless, the last ten amino acids of this tail, when transplanted on to human CD8, caused efficient targeting of the chimaeric protein to endosomes and lysosomes in transfected normal rat kidney cells.

Full Text

The Full Text of this article is available as a PDF (371.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr V. A., Scott L. J., Hubbard A. L. Immunoadsorption of hepatic vesicles carrying newly synthesized dipeptidyl peptidase IV and polymeric IgA receptor. J Biol Chem. 1995 Nov 17;270(46):27834–27844. doi: 10.1074/jbc.270.46.27834. [DOI] [PubMed] [Google Scholar]
  2. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boll W., Ohno H., Songyang Z., Rapoport I., Cantley L. C., Bonifacino J. S., Kirchhausen T. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. EMBO J. 1996 Nov 1;15(21):5789–5795. [PMC free article] [PubMed] [Google Scholar]
  4. Carraway K. L., Hull S. R. Cell surface mucin-type glycoproteins and mucin-like domains. Glycobiology. 1991 Mar;1(2):131–138. doi: 10.1093/glycob/1.2.131. [DOI] [PubMed] [Google Scholar]
  5. Croze E., Ivanov I. E., Kreibich G., Adesnik M., Sabatini D. D., Rosenfeld M. G. Endolyn-78, a membrane glycoprotein present in morphologically diverse components of the endosomal and lysosomal compartments: implications for lysosome biogenesis. J Cell Biol. 1989 May;108(5):1597–1613. doi: 10.1083/jcb.108.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuh G., Mulkerrin M. G., Bass S., McFarland N., Brochier M., Bourell J. H., Light D. R., Wells J. A. The human growth hormone receptor. Secretion from Escherichia coli and disulfide bonding pattern of the extracellular binding domain. J Biol Chem. 1990 Feb 25;265(6):3111–3115. [PubMed] [Google Scholar]
  7. Fukuda M. Biogenesis of the lysosomal membrane. Subcell Biochem. 1994;22:199–230. doi: 10.1007/978-1-4615-2401-4_7. [DOI] [PubMed] [Google Scholar]
  8. Furuno K., Ishikawa T., Akasaki K., Yano S., Tanaka Y., Yamaguchi Y., Tsuji H., Himeno M., Kato K. Morphological localization of a major lysosomal membrane glycoprotein in the endocytic membrane system. J Biochem. 1989 Oct;106(4):708–716. doi: 10.1093/oxfordjournals.jbchem.a122921. [DOI] [PubMed] [Google Scholar]
  9. Girotti M., Banting G. TGN38-green fluorescent protein hybrid proteins expressed in stably transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38. J Cell Sci. 1996 Dec;109(Pt 12):2915–2926. doi: 10.1242/jcs.109.12.2915. [DOI] [PubMed] [Google Scholar]
  10. Grimaldi K. A., Hutton J. C., Siddle K. Production and characterization of monoclonal antibodies to insulin secretory granule membranes. Biochem J. 1987 Jul 15;245(2):557–566. doi: 10.1042/bj2450557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guarnieri F. G., Arterburn L. M., Penno M. B., Cha Y., August J. T. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem. 1993 Jan 25;268(3):1941–1946. [PubMed] [Google Scholar]
  12. Hansen J. E., Lund O., Engelbrecht J., Bohr H., Nielsen J. O., Hansen J. E. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J. 1995 Jun 15;308(Pt 3):801–813. doi: 10.1042/bj3080801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harter C., Mellman I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J Cell Biol. 1992 Apr;117(2):311–325. doi: 10.1083/jcb.117.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirst J., Bright N. A., Rous B., Robinson M. S. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell. 1999 Aug;10(8):2787–2802. doi: 10.1091/mbc.10.8.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hirst J., Robinson M. S. Clathrin and adaptors. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):173–193. doi: 10.1016/s0167-4889(98)00056-1. [DOI] [PubMed] [Google Scholar]
  16. Holness C. L., Simmons D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993 Mar 15;81(6):1607–1613. [PubMed] [Google Scholar]
  17. Honda N., Machida K., Mamiya T., Takahashi T., Takishima T., Hasegawa N., Kamano T., Hashimoto M., Ohno K., Hosoba M. The optimum Butterworth-Wiener filter for I-123 IMP brain SPECT. Radiat Med. 1989 May-Jun;7(3):124–128. [PubMed] [Google Scholar]
  18. Horn M., Banting G. Okadaic acid treatment leads to a fragmentation of the trans-Golgi network and an increase in expression of TGN38 at the cell surface. Biochem J. 1994 Jul 1;301(Pt 1):69–73. doi: 10.1042/bj3010069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hunziker W., Geuze H. J. Intracellular trafficking of lysosomal membrane proteins. Bioessays. 1996 May;18(5):379–389. doi: 10.1002/bies.950180508. [DOI] [PubMed] [Google Scholar]
  20. Höning S., Hunziker W. Cytoplasmic determinants involved in direct lysosomal sorting, endocytosis, and basolateral targeting of rat lgp120 (lamp-I) in MDCK cells. J Cell Biol. 1995 Feb;128(3):321–332. doi: 10.1083/jcb.128.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ihrke G., Martin G. V., Shanks M. R., Schrader M., Schroer T. A., Hubbard A. L. Apical plasma membrane proteins and endolyn-78 travel through a subapical compartment in polarized WIF-B hepatocytes. J Cell Biol. 1998 Apr 6;141(1):115–133. doi: 10.1083/jcb.141.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirchhausen T., Bonifacino J. S., Riezman H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol. 1997 Aug;9(4):488–495. doi: 10.1016/s0955-0674(97)80024-5. [DOI] [PubMed] [Google Scholar]
  23. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  24. Littman D. R., Thomas Y., Maddon P. J., Chess L., Axel R. The isolation and sequence of the gene encoding T8: a molecule defining functional classes of T lymphocytes. Cell. 1985 Feb;40(2):237–246. doi: 10.1016/0092-8674(85)90138-2. [DOI] [PubMed] [Google Scholar]
  25. Luzio J. P., Brake B., Banting G., Howell K., Bressan G., Braghetta P., Stanley K. K. Expression cloning of proteins on membrane traffic pathways. Biochem Soc Trans. 1990 Apr;18(2):148–149. doi: 10.1042/bst0180148. [DOI] [PubMed] [Google Scholar]
  26. Masuzawa Y., Miyauchi T., Hamanoue M., Ando S., Yoshida J., Takao S., Shimazu H., Adachi M., Muramatsu T. A novel core protein as well as polymorphic epithelial mucin carry peanut agglutinin binding sites in human gastric carcinoma cells: sequence analysis and examination of gene expression. J Biochem. 1992 Nov;112(5):609–615. doi: 10.1093/oxfordjournals.jbchem.a123948. [DOI] [PubMed] [Google Scholar]
  27. Mullock B. M., Bright N. A., Fearon C. W., Gray S. R., Luzio J. P. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J Cell Biol. 1998 Feb 9;140(3):591–601. doi: 10.1083/jcb.140.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Munro S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 1995 Oct 2;14(19):4695–4704. doi: 10.1002/j.1460-2075.1995.tb00151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohno H., Aguilar R. C., Yeh D., Taura D., Saito T., Bonifacino J. S. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J Biol Chem. 1998 Oct 2;273(40):25915–25921. doi: 10.1074/jbc.273.40.25915. [DOI] [PubMed] [Google Scholar]
  30. Ohno H., Fournier M. C., Poy G., Bonifacino J. S. Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains. J Biol Chem. 1996 Nov 15;271(46):29009–29015. doi: 10.1074/jbc.271.46.29009. [DOI] [PubMed] [Google Scholar]
  31. Ohsumi Y., Ishikawa T., Kato K. A rapid and simplified method for the preparation of lysosomal membranes from rat liver. J Biochem. 1983 Feb;93(2):547–556. [PubMed] [Google Scholar]
  32. Owen D. J., Evans P. R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science. 1998 Nov 13;282(5392):1327–1332. doi: 10.1126/science.282.5392.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ozaki K., Nagata M., Suzuki M., Fujiwara T., Ueda K., Miyoshi Y., Takahashi E., Nakamura Y. Isolation and characterization of a novel human lung-specific gene homologous to lysosomal membrane glycoproteins 1 and 2: significantly increased expression in cancers of various tissues. Cancer Res. 1998 Aug 15;58(16):3499–3503. [PubMed] [Google Scholar]
  34. Peters C., von Figura K. Biogenesis of lysosomal membranes. FEBS Lett. 1994 Jun 6;346(1):108–114. doi: 10.1016/0014-5793(94)00499-4. [DOI] [PubMed] [Google Scholar]
  35. Ponnambalam S., Rabouille C., Luzio J. P., Nilsson T., Warren G. The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network. J Cell Biol. 1994 Apr;125(2):253–268. doi: 10.1083/jcb.125.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reaves B. J., Banting G., Luzio J. P. Lumenal and transmembrane domains play a role in sorting type I membrane proteins on endocytic pathways. Mol Biol Cell. 1998 May;9(5):1107–1122. doi: 10.1091/mbc.9.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reaves B. J., Bright N. A., Mullock B. M., Luzio J. P. The effect of wortmannin on the localisation of lysosomal type I integral membrane glycoproteins suggests a role for phosphoinositide 3-kinase activity in regulating membrane traffic late in the endocytic pathway. J Cell Sci. 1996 Apr;109(Pt 4):749–762. doi: 10.1242/jcs.109.4.749. [DOI] [PubMed] [Google Scholar]
  38. Rohrer J., Schweizer A., Russell D., Kornfeld S. The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J Cell Biol. 1996 Feb;132(4):565–576. doi: 10.1083/jcb.132.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stephens D. J., Banting G. Specificity of interaction between adaptor-complex medium chains and the tyrosine-based sorting motifs of TGN38 and lgp120. Biochem J. 1998 Nov 1;335(Pt 3):567–572. doi: 10.1042/bj3350567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Van Klinken B. J., Dekker J., Büller H. A., Einerhand A. W. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol. 1995 Nov;269(5 Pt 1):G613–G627. doi: 10.1152/ajpgi.1995.269.5.G613. [DOI] [PubMed] [Google Scholar]
  42. Watt S. M., Bühring H. J., Rappold I., Chan J. Y., Lee-Prudhoe J., Jones T., Zannettino A. C., Simmons P. J., Doyonnas R., Sheer D. CD164, a novel sialomucin on CD34(+) and erythroid subsets, is located on human chromosome 6q21. Blood. 1998 Aug 1;92(3):849–866. [PubMed] [Google Scholar]
  43. Williams M. A., Fukuda M. Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail. J Cell Biol. 1990 Sep;111(3):955–966. doi: 10.1083/jcb.111.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zannettino A. C., Bühring H. J., Niutta S., Watt S. M., Benton M. A., Simmons P. J. The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis. Blood. 1998 Oct 15;92(8):2613–2628. [PubMed] [Google Scholar]
  45. de Saint-Vis B., Vincent J., Vandenabeele S., Vanbervliet B., Pin J. J., Aït-Yahia S., Patel S., Mattei M. G., Banchereau J., Zurawski S. A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity. 1998 Sep;9(3):325–336. doi: 10.1016/s1074-7613(00)80615-9. [DOI] [PubMed] [Google Scholar]
  46. von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES