Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):307–314.

Geldanamycin disrupts platelet-membrane structure, leading to membrane permeabilization and inhibition of platelet aggregation.

S Suttitanamongkol 1, A R Gear 1, R Polanowska-Grabowska 1
PMCID: PMC1220760  PMID: 10620508

Abstract

Geldanamycin (GA), a benzoquinoid ansamycin antibiotic, has been used as a tyrosine kinase inhibitor and an anti-tumour agent and is known to bind to heat-shock protein 90. In the present study on human platelets we have found that GA inhibited platelet aggregation induced by ADP, thrombin and the thrombin-receptor-activating peptide and caused platelet plasma-membrane damage, detected by leakage of adenine nucleotides as well as serotonin. Scanning electron microscopy (SEM) revealed that platelet exposure to GA led to the formation of holes or fenestrations in the platelet plasma membrane, confirming GA's ability to initiate membrane damage. In addition, GA itself caused both the dephosphorylation and phosphorylation of proteins in resting platelets and prevented agonist-induced phosphorylation of pleckstrin, the 20-kDa myosin light chain and other proteins. Another ansamycin, herbimycin A, also inhibited platelet aggregation, but caused minimal membrane permeabilization, as detected by (3)H release from platelets labelled previously with [(3)H]adenine, and much less membrane damage, revealed by SEM. Overall, GA is able to disrupt membrane structure and inhibit platelet aggregation, an ability which may be linked to alterations in the activity of protein kinases and phosphatases.

Full Text

The Full Text of this article is available as a PDF (300.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunton V. G., Steele G., Lewis A. D., Workman P. Geldanamycin-induced cytotoxicity in human colon-cancer cell lines: evidence against the involvement of c-Src or DT-diaphorase. Cancer Chemother Pharmacol. 1998;41(5):417–422. doi: 10.1007/s002800050760. [DOI] [PubMed] [Google Scholar]
  2. Carty S. E., Johnson R. G., Scarpa A. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient. J Biol Chem. 1981 Nov 10;256(21):11244–11250. [PubMed] [Google Scholar]
  3. Chen H. S., Singh S. S., Perdew G. H. The Ah receptor is a sensitive target of geldanamycin-induced protein turnover. Arch Biochem Biophys. 1997 Dec 1;348(1):190–198. doi: 10.1006/abbi.1997.0398. [DOI] [PubMed] [Google Scholar]
  4. Czar M. J., Galigniana M. D., Silverstein A. M., Pratt W. B. Geldanamycin, a heat shock protein 90-binding benzoquinone ansamycin, inhibits steroid-dependent translocation of the glucocorticoid receptor from the cytoplasm to the nucleus. Biochemistry. 1997 Jun 24;36(25):7776–7785. doi: 10.1021/bi970648x. [DOI] [PubMed] [Google Scholar]
  5. Daniel J. L., Molish I. R., Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem. 1981 Jul 25;256(14):7510–7514. [PubMed] [Google Scholar]
  6. Dasgupta G., Momand J. Geldanamycin prevents nuclear translocation of mutant p53. Exp Cell Res. 1997 Nov 25;237(1):29–37. doi: 10.1006/excr.1997.3766. [DOI] [PubMed] [Google Scholar]
  7. DeBoer C., Meulman P. A., Wnuk R. J., Peterson D. H. Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 1970 Sep;23(9):442–447. doi: 10.7164/antibiotics.23.442. [DOI] [PubMed] [Google Scholar]
  8. Ferrell J. E., Jr, Mitchell K. T., Huestis W. H. Membrane bilayer balance and platelet shape: morphological and biochemical responses to amphipathic compounds. Biochim Biophys Acta. 1988 Apr 7;939(2):223–237. doi: 10.1016/0005-2736(88)90066-1. [DOI] [PubMed] [Google Scholar]
  9. Fishkes H., Rudnick G. Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. J Biol Chem. 1982 May 25;257(10):5671–5677. [PubMed] [Google Scholar]
  10. Garcia R., Parikh N. U., Saya H., Gallick G. E. Effect of herbimycin A on growth and pp60c-src activity in human colon tumor cell lines. Oncogene. 1991 Nov;6(11):1983–1989. [PubMed] [Google Scholar]
  11. Geanacopoulos M., Gear A. R. Application of spray-freezing to the study of rapid platelet reactions by a quenched-flow approach. Thromb Res. 1988 Dec 15;52(6):599–607. doi: 10.1016/0049-3848(88)90132-6. [DOI] [PubMed] [Google Scholar]
  12. Gear A. R., Burke D. Thrombin-induced secretion of serotonin from platelets can occur in seconds. Blood. 1982 Nov;60(5):1231–1234. [PubMed] [Google Scholar]
  13. Gear A. R. Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events. Can J Physiol Pharmacol. 1994 Mar;72(3):285–294. doi: 10.1139/y94-044. [DOI] [PubMed] [Google Scholar]
  14. Gear A. R. Rapid platelet morphological changes visualized by scanning-electron microscopy: kinetics derived from a quenched-flow approach. Br J Haematol. 1984 Mar;56(3):387–398. doi: 10.1111/j.1365-2141.1984.tb03969.x. [DOI] [PubMed] [Google Scholar]
  15. Gear A. R. Rapid reactions of platelets studied by a quenched-flow approach: aggregation kinetics. J Lab Clin Med. 1982 Dec;100(6):866–886. [PubMed] [Google Scholar]
  16. Hers I., Donath J., van Willigen G., Akkerman J. W. Differential involvement of tyrosine and serine/threonine kinases in platelet integrin alphaIIbbeta3 exposure. Arterioscler Thromb Vasc Biol. 1998 Mar;18(3):404–414. doi: 10.1161/01.atv.18.3.404. [DOI] [PubMed] [Google Scholar]
  17. Holmsen H., Day H. J., Setkowsky C. A. Secretory mechanisms. Behaviour of adenine nucleotides during the platelet release reaction induced by adenosine diphosphate and adrenaline. Biochem J. 1972 Aug;129(1):67–82. doi: 10.1042/bj1290067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jackson S. P., Schoenwaelder S. M., Yuan Y., Salem H. H., Cooray P. Non-receptor protein tyrosine kinases and phosphatases in human platelets. Thromb Haemost. 1996 Nov;76(5):640–650. [PubMed] [Google Scholar]
  19. Jones G. D., Gear A. R. Subsecond calcium dynamics in ADP- and thrombin-stimulated platelets: a continuous-flow approach using indo-1. Blood. 1988 Jun;71(6):1539–1543. [PubMed] [Google Scholar]
  20. Levy-Toledano S., Gallet C., Nadal F., Bryckaert M., Maclouf J., Rosa J. P. Phosphorylation and dephosphorylation mechanisms in platelet function: a tightly regulated balance. Thromb Haemost. 1997 Jul;78(1):226–233. [PubMed] [Google Scholar]
  21. Mimnaugh E. G., Chavany C., Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem. 1996 Sep 13;271(37):22796–22801. doi: 10.1074/jbc.271.37.22796. [DOI] [PubMed] [Google Scholar]
  22. Murakami M., Odake K. Adenine nucleotide metabolism of human platelets. Thin-layer chromatographic separation of labelled adenine nucleotides. Thromb Diath Haemorrh. 1971 Jun 30;25(2):223–233. [PubMed] [Google Scholar]
  23. Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
  24. Omura S., Iwai Y., Takahashi Y., Sadakane N., Nakagawa A., Oiwa H., Hasegawa Y., Ikai T. Herbimycin, a new antibiotic produced by a strain of Streptomyces. J Antibiot (Tokyo) 1979 Apr;32(4):255–261. doi: 10.7164/antibiotics.32.255. [DOI] [PubMed] [Google Scholar]
  25. Opstvedt A., Rongved S., Aarsaether N., Lillehaug J. R., Holmsen H. Differential effects of chlorpromazine on secretion, protein phosphorylation and phosphoinositide metabolism in stimulated platelets. Biochem J. 1986 Aug 15;238(1):159–166. doi: 10.1042/bj2380159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Polanowska-Grabowska R., Simon C. G., Jr, Falchetto R., Shabanowitz J., Hunt D. F., Gear A. R. Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. Blood. 1997 Aug 15;90(4):1516–1526. [PubMed] [Google Scholar]
  27. Pratt W. B. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med. 1998 Apr;217(4):420–434. doi: 10.3181/00379727-217-44252. [DOI] [PubMed] [Google Scholar]
  28. Sasaki K., Yasuda H., Onodera K. Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J Antibiot (Tokyo) 1979 Aug;32(8):849–851. doi: 10.7164/antibiotics.32.849. [DOI] [PubMed] [Google Scholar]
  29. Schulte T. W., An W. G., Neckers L. M. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun. 1997 Oct 29;239(3):655–659. doi: 10.1006/bbrc.1997.7527. [DOI] [PubMed] [Google Scholar]
  30. Schulte T. W., Blagosklonny M. V., Ingui C., Neckers L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem. 1995 Oct 13;270(41):24585–24588. doi: 10.1074/jbc.270.41.24585. [DOI] [PubMed] [Google Scholar]
  31. Shiao Y. J., Chen J. C., Wang C. T. The solubilization and morphological change of human platelets in various detergents. Biochim Biophys Acta. 1989 Mar 27;980(1):56–68. doi: 10.1016/0005-2736(89)90200-9. [DOI] [PubMed] [Google Scholar]
  32. Simon C. G., Jr, Gear A. R. Membrane-destabilizing properties of C2-ceramide may be responsible for its ability to inhibit platelet aggregation. Biochemistry. 1998 Feb 17;37(7):2059–2069. doi: 10.1021/bi9710636. [DOI] [PubMed] [Google Scholar]
  33. Stebbins C. E., Russo A. A., Schneider C., Rosen N., Hartl F. U., Pavletich N. P. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997 Apr 18;89(2):239–250. doi: 10.1016/s0092-8674(00)80203-2. [DOI] [PubMed] [Google Scholar]
  34. Tyers M., Haslam R. J., Rachubinski R. A., Harley C. B. Molecular analysis of pleckstrin: the major protein kinase C substrate of platelets. J Cell Biochem. 1989 Jun;40(2):133–145. doi: 10.1002/jcb.240400202. [DOI] [PubMed] [Google Scholar]
  35. Uehara Y., Fukazawa H. Use and selectivity of herbimycin A as inhibitor of protein-tyrosine kinases. Methods Enzymol. 1991;201:370–379. doi: 10.1016/0076-6879(91)01033-x. [DOI] [PubMed] [Google Scholar]
  36. Uehara Y., Hori M., Takeuchi T., Umezawa H. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol. 1986 Jun;6(6):2198–2206. doi: 10.1128/mcb.6.6.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Uehara Y., Hori M., Takeuchi T., Umezawa H. Screening of agents which convert 'transformed morphology' of Rous sarcoma virus-infected rat kidney cells to 'normal morphology': identification of an active agent as herbimycin and its inhibition of intracellular src kinase. Jpn J Cancer Res. 1985 Aug;76(8):672–675. [PubMed] [Google Scholar]
  38. Wallace W. C., Bensusan H. B. Protein phosphorylation in platelets stimulated by immobilized thrombin at 37 degrees and 4 degrees C. J Biol Chem. 1980 Mar 10;255(5):1932–1937. [PubMed] [Google Scholar]
  39. Whitesell L., Mimnaugh E. G., De Costa B., Myers C. E., Neckers L. M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8324–8328. doi: 10.1073/pnas.91.18.8324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whitesell L., Sutphin P., An W. G., Schulte T., Blagosklonny M. V., Neckers L. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene. 1997 Jun 12;14(23):2809–2816. doi: 10.1038/sj.onc.1201120. [DOI] [PubMed] [Google Scholar]
  41. Yamaki H., Suzuki H., Choi E. C., Tanaka N. Inhibition of DNA synthesis in murine tumor cells by geldanamycin, an antibiotic of the benzoquinoid ansamycin group. J Antibiot (Tokyo) 1982 Jul;35(7):886–892. doi: 10.7164/antibiotics.35.886. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES