Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):315–319.

Hydrolyses of alpha- and beta-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens.

D Becker 1, K S Johnson 1, A Koivula 1, M Schülein 1, M L Sinnott 1
PMCID: PMC1220761  PMID: 10620509

Abstract

We have measured the hydrolyses of alpha- and beta-cellobiosyl fluorides by the Cel6A [cellobiohydrolase II (CBHII)] enzymes of Humicola insolens and Trichoderma reesei, which have essentially identical crystal structures [Varrot, Hastrup, Schülein and Davies (1999) Biochem. J. 337, 297-304]. The beta-fluoride is hydrolysed according to Michaelis-Menten kinetics by both enzymes. When the approximately 2.0% of beta-fluoride which is an inevitable contaminant in all preparations of the alpha-fluoride is hydrolysed by Cel7A (CBHI) of T. reesei before initial-rate measurements are made, both Cel6A enzymes show a sigmoidal dependence of rate on substrate concentration, as well as activation by cellobiose. These kinetics are consistent with the classic Hehre resynthesis-hydrolysis mechanism for glycosidase-catalysed hydrolysis of the 'wrong' glycosyl fluoride for both enzymes. The Michaelis-Menten kinetics of alpha-cellobiosyl fluoride hydrolysis by the T. reesei enzyme, and its inhibition by cellobiose, previously reported [Konstantinidis, Marsden and Sinnott (1993) Biochem. J. 291, 883-888] are withdrawn. (1)H NMR monitoring of the hydrolysis of alpha-cellobiosyl fluoride by both enzymes reveals that in neither case is alpha-cellobiosyl fluoride released into solution in detectable quantities, but instead it appears to be hydrolysed in the enzyme active site as soon as it is formed.

Full Text

The Full Text of this article is available as a PDF (134.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cottaz S., Henrissat B., Driguez H. Mechanism-based inhibition and stereochemistry of glucosinolate hydrolysis by myrosinase. Biochemistry. 1996 Dec 3;35(48):15256–15259. doi: 10.1021/bi9622480. [DOI] [PubMed] [Google Scholar]
  2. Damude H. G., Ferro V., Withers S. G., Warren R. A. Substrate specificity of endoglucanase A from Cellulomonas fimi: fundamental differences between endoglucanases and exoglucanases from family 6. Biochem J. 1996 Apr 15;315(Pt 2):467–472. doi: 10.1042/bj3150467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Damude H. G., Withers S. G., Kilburn D. G., Miller R. C., Jr, Warren R. A. Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry. 1995 Feb 21;34(7):2220–2224. doi: 10.1021/bi00007a016. [DOI] [PubMed] [Google Scholar]
  4. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  5. Hehre E. J., Brewer C. F., Genghof D. S. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of beta-amylase on alpha- and beta-maltosyl fluoride. J Biol Chem. 1979 Jul 10;254(13):5942–5950. [PubMed] [Google Scholar]
  6. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  8. Koivula A., Kinnari T., Harjunpä V., Ruohonen L., Teleman A., Drakenberg T., Rouvinen J., Jones T. A., Teeri T. T. Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett. 1998 Jun 16;429(3):341–346. doi: 10.1016/s0014-5793(98)00596-1. [DOI] [PubMed] [Google Scholar]
  9. Meghji P., Skladanowski A. C., Newby A. C., Slakey L. L., Pearson J. D. Effect of 5'-deoxy-5'-isobutylthioadenosine on formation and release of adenosine from neonatal and adult rat ventricular myocytes. Biochem J. 1993 May 1;291(Pt 3):833–839. doi: 10.1042/bj2910833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
  11. Spezio M., Wilson D. B., Karplus P. A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry. 1993 Sep 28;32(38):9906–9916. doi: 10.1021/bi00089a006. [DOI] [PubMed] [Google Scholar]
  12. Varrot A., Hastrup S., Schülein M., Davies G. J. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution. Biochem J. 1999 Jan 15;337(Pt 2):297–304. [PMC free article] [PubMed] [Google Scholar]
  13. Zou J. y., Kleywegt G. J., Ståhlberg J., Driguez H., Nerinckx W., Claeyssens M., Koivula A., Teeri T. T., Jones T. A. Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999 Sep 15;7(9):1035–1045. doi: 10.1016/s0969-2126(99)80171-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES