Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):335–343.

The winged-helix/forkhead protein myocyte nuclear factor beta (MNF-beta) forms a co-repressor complex with mammalian sin3B.

Q Yang 1, Y Kong 1, B Rothermel 1, D J Garry 1, R Bassel-Duby 1, R S Williams 1
PMCID: PMC1220762  PMID: 10620510

Abstract

Winged-helix/forkhead proteins regulate developmental events in both invertebrate and vertebrate organisms, but biochemical functions that establish a mechanism of action have been defined for only a few members of this extensive gene family. Here we demonstrate that MNF (myocyte nuclear factor)-beta, a winged-helix protein expressed selectively and transiently in myogenic precursor cells of the heart and skeletal muscles, collaborates with proteins of the mammalian Sin3 (mSin3) family to repress transcription. Mutated forms of MNF-beta that fail to bind mSin3 are defective in transcriptional repression and in negative growth regulation, an overexpression phenotype revealed in oncogenic transformation assays. These data extend the known repertoire of transcription factors with which mSin3 proteins can function as co-repressors to include members of the winged-helix gene family. Transcriptional repression by MNF-beta-mSin3 complexes may contribute to the co-ordination of cellular proliferation and terminal differentiation of myogenic precursor cells.

Full Text

The Full Text of this article is available as a PDF (313.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alland L., Muhle R., Hou H., Jr, Potes J., Chin L., Schreiber-Agus N., DePinho R. A. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997 May 1;387(6628):49–55. doi: 10.1038/387049a0. [DOI] [PubMed] [Google Scholar]
  2. Ayer D. E., Lawrence Q. A., Eisenman R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell. 1995 Mar 10;80(5):767–776. doi: 10.1016/0092-8674(95)90355-0. [DOI] [PubMed] [Google Scholar]
  3. Bassel-Duby R., Hernandez M. D., Yang Q., Rochelle J. M., Seldin M. F., Williams R. S. Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes. Mol Cell Biol. 1994 Jul;14(7):4596–4605. doi: 10.1128/mcb.14.7.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
  5. Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
  6. Clark K. L., Halay E. D., Lai E., Burley S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993 Jul 29;364(6436):412–420. doi: 10.1038/364412a0. [DOI] [PubMed] [Google Scholar]
  7. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  8. Epstein D. J., McMahon A. P., Joyner A. L. Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and -independent mechanisms. Development. 1999 Jan;126(2):281–292. doi: 10.1242/dev.126.2.281. [DOI] [PubMed] [Google Scholar]
  9. Galaktionov K., Chen X., Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996 Aug 8;382(6591):511–517. doi: 10.1038/382511a0. [DOI] [PubMed] [Google Scholar]
  10. Garry D. J., Yang Q., Bassel-Duby R., Williams R. S. Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol. 1997 Aug 15;188(2):280–294. doi: 10.1006/dbio.1997.8657. [DOI] [PubMed] [Google Scholar]
  11. Grayson J., Williams R. S., Yu Y. T., Bassel-Duby R. Synergistic interactions between heterologous upstream activation elements and specific TATA sequences in a muscle-specific promoter. Mol Cell Biol. 1995 Apr;15(4):1870–1878. doi: 10.1128/mcb.15.4.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gregori C., Kahn A., Pichard A. L. Activity of the rat liver-specific aldolase B promoter is restrained by HNF3. Nucleic Acids Res. 1994 Apr 11;22(7):1242–1246. doi: 10.1093/nar/22.7.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo K., Wang J., Andrés V., Smith R. C., Walsh K. MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Mol Cell Biol. 1995 Jul;15(7):3823–3829. doi: 10.1128/mcb.15.7.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halevy O., Novitch B. G., Spicer D. B., Skapek S. X., Rhee J., Hannon G. J., Beach D., Lassar A. B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995 Feb 17;267(5200):1018–1021. doi: 10.1126/science.7863327. [DOI] [PubMed] [Google Scholar]
  15. Harper S. E., Qiu Y., Sharp P. A. Sin3 corepressor function in Myc-induced transcription and transformation. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8536–8540. doi: 10.1073/pnas.93.16.8536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hassig C. A., Fleischer T. C., Billin A. N., Schreiber S. L., Ayer D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997 May 2;89(3):341–347. doi: 10.1016/s0092-8674(00)80214-7. [DOI] [PubMed] [Google Scholar]
  17. Heinzel T., Lavinsky R. M., Mullen T. M., Söderstrom M., Laherty C. D., Torchia J., Yang W. M., Brard G., Ngo S. D., Davie J. R. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997 May 1;387(6628):43–48. doi: 10.1038/387043a0. [DOI] [PubMed] [Google Scholar]
  18. Horner M. A., Quintin S., Domeier M. E., Kimble J., Labouesse M., Mango S. E. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 1998 Jul 1;12(13):1947–1952. doi: 10.1101/gad.12.13.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hurlin P. J., Quéva C., Eisenman R. N. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 1997 Jan 1;11(1):44–58. doi: 10.1101/gad.11.1.44. [DOI] [PubMed] [Google Scholar]
  20. Kadosh D., Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell. 1997 May 2;89(3):365–371. doi: 10.1016/s0092-8674(00)80217-2. [DOI] [PubMed] [Google Scholar]
  21. Kaufmann E., Knöchel W. Five years on the wings of fork head. Mech Dev. 1996 Jun;57(1):3–20. doi: 10.1016/0925-4773(96)00539-4. [DOI] [PubMed] [Google Scholar]
  22. Kops G. J., de Ruiter N. D., De Vries-Smits A. M., Powell D. R., Bos J. L., Burgering B. M. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999 Apr 15;398(6728):630–634. doi: 10.1038/19328. [DOI] [PubMed] [Google Scholar]
  23. Kuo Y. M., Jones N., Zhou B., Panzer S., Larson V., Beckendorf S. K. Salivary duct determination in Drosophila: roles of the EGF receptor signalling pathway and the transcription factors fork head and trachealess. Development. 1996 Jun;122(6):1909–1917. doi: 10.1242/dev.122.6.1909. [DOI] [PubMed] [Google Scholar]
  24. Labbé E., Silvestri C., Hoodless P. A., Wrana J. L., Attisano L. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell. 1998 Jul;2(1):109–120. doi: 10.1016/s1097-2765(00)80119-7. [DOI] [PubMed] [Google Scholar]
  25. Laherty C. D., Billin A. N., Lavinsky R. M., Yochum G. S., Bush A. C., Sun J. M., Mullen T. M., Davie J. R., Rose D. W., Glass C. K. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell. 1998 Jul;2(1):33–42. doi: 10.1016/s1097-2765(00)80111-2. [DOI] [PubMed] [Google Scholar]
  26. Laherty C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., Eisenman R. N. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell. 1997 May 2;89(3):349–356. doi: 10.1016/s0092-8674(00)80215-9. [DOI] [PubMed] [Google Scholar]
  27. Liu B., Dou C. L., Prabhu L., Lai E. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals. Mol Cell Biol. 1999 Jan;19(1):424–430. doi: 10.1128/mcb.19.1.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Melcher K., Johnston S. A. GAL4 interacts with TATA-binding protein and coactivators. Mol Cell Biol. 1995 May;15(5):2839–2848. doi: 10.1128/mcb.15.5.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Min S., Taparowsky E. J. v-Myc, but not Max, possesses domains that function in both transcription activation and cellular transformation. Oncogene. 1992 Aug;7(8):1531–1540. [PubMed] [Google Scholar]
  30. Molkentin J. D., Black B. L., Martin J. F., Olson E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 1995 Dec 29;83(7):1125–1136. doi: 10.1016/0092-8674(95)90139-6. [DOI] [PubMed] [Google Scholar]
  31. Nagy L., Kao H. Y., Chakravarti D., Lin R. J., Hassig C. A., Ayer D. E., Schreiber S. L., Evans R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997 May 2;89(3):373–380. doi: 10.1016/s0092-8674(00)80218-4. [DOI] [PubMed] [Google Scholar]
  32. Novitch B. G., Mulligan G. J., Jacks T., Lassar A. B. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol. 1996 Oct;135(2):441–456. doi: 10.1083/jcb.135.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  34. Parker S. B., Eichele G., Zhang P., Rawls A., Sands A. T., Bradley A., Olson E. N., Harper J. W., Elledge S. J. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science. 1995 Feb 17;267(5200):1024–1027. doi: 10.1126/science.7863329. [DOI] [PubMed] [Google Scholar]
  35. Parks T. D., Leuther K. K., Howard E. D., Johnston S. A., Dougherty W. G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem. 1994 Feb 1;216(2):413–417. doi: 10.1006/abio.1994.1060. [DOI] [PubMed] [Google Scholar]
  36. Samadani U., Costa R. H. The transcriptional activator hepatocyte nuclear factor 6 regulates liver gene expression. Mol Cell Biol. 1996 Nov;16(11):6273–6284. doi: 10.1128/mcb.16.11.6273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schreiber-Agus N., Chin L., Chen K., Torres R., Rao G., Guida P., Skoultchi A. I., DePinho R. A. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell. 1995 Mar 10;80(5):777–786. doi: 10.1016/0092-8674(95)90356-9. [DOI] [PubMed] [Google Scholar]
  38. Schreiber-Agus N., Meng Y., Hoang T., Hou H., Jr, Chen K., Greenberg R., Cordon-Cardo C., Lee H. W., DePinho R. A. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature. 1998 Jun 4;393(6684):483–487. doi: 10.1038/31008. [DOI] [PubMed] [Google Scholar]
  39. Skapek S. X., Rhee J., Spicer D. B., Lassar A. B. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science. 1995 Feb 17;267(5200):1022–1024. doi: 10.1126/science.7863328. [DOI] [PubMed] [Google Scholar]
  40. Walsh K., Perlman H. Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev. 1997 Oct;7(5):597–602. doi: 10.1016/s0959-437x(97)80005-6. [DOI] [PubMed] [Google Scholar]
  41. Yang Q., Bassel-Duby R., Williams R. S. Transient expression of a winged-helix protein, MNF-beta, during myogenesis. Mol Cell Biol. 1997 Sep;17(9):5236–5243. doi: 10.1128/mcb.17.9.5236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang Y., Iratni R., Erdjument-Bromage H., Tempst P., Reinberg D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 1997 May 2;89(3):357–364. doi: 10.1016/s0092-8674(00)80216-0. [DOI] [PubMed] [Google Scholar]
  43. Zhou S., Zawel L., Lengauer C., Kinzler K. W., Vogelstein B. Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell. 1998 Jul;2(1):121–127. doi: 10.1016/s1097-2765(00)80120-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES