Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):345–350.

A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln.

B Y Hiraoka 1, F Yamakura 1, S Sugio 1, K Nakayama 1
PMCID: PMC1220763  PMID: 10620511

Abstract

Gln-70, which is located near the active-site metal, is conserved in aligned amino acid sequences of iron-containing superoxide dimutases (Fe-SODs) and cambialistic SOD from Porphyromonas gingivalis, but is complementarily substituted with Gln-142 in manganese-containing SODs (Mn-SODs). In order to clarify the contribution of this exchange of Gln to the metal-specific activity of P. gingivalis SOD, we have prepared a mutant of the enzyme with conversions of Gln-70 to Gly and Ala-142 to Gln. The ratio of the specific activities of Mn- to Fe-reconstituted P. gingivalis SOD increased from 1.4 in the wild-type to 3.5 in the mutant SODs. Furthermore, the visible absorption spectra of the Mn- and Fe-reconstituted mutant SODs more closely resembled that of Mn-specific SOD than that of the wild-type SOD. We conclude that a difference in configuration of the Gln residues of P. gingivalis SOD partially accounts for the metal-specific activity of the enzyme.

Full Text

The Full Text of this article is available as a PDF (174.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano A., Shizukuishi S., Tsunemitsu A., Maekawa K., Tsunasawa S. The primary structure of superoxide dismutase purified from anaerobically maintained Bacteroides gingivalis. FEBS Lett. 1990 Oct 15;272(1-2):217–220. doi: 10.1016/0014-5793(90)80488-5. [DOI] [PubMed] [Google Scholar]
  2. Barra D., Schininà M. E., Bossa F., Puget K., Durosay P., Guissani A., Michelson A. M. A tetrameric iron superoxide dismutase from the eucaryote Tetrahymena pyriformis. J Biol Chem. 1990 Oct 15;265(29):17680–17687. [PubMed] [Google Scholar]
  3. Borgstahl G. E., Parge H. E., Hickey M. J., Beyer W. F., Jr, Hallewell R. A., Tainer J. A. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992 Oct 2;71(1):107–118. doi: 10.1016/0092-8674(92)90270-m. [DOI] [PubMed] [Google Scholar]
  4. Brock C. J., Harris J. I. Superoxide dismutase from Bacillus stearothermophilus: reversible removal of manganese and its replacement by other metals [proceedings]. Biochem Soc Trans. 1977;5(5):1537–1539. doi: 10.1042/bst0051537. [DOI] [PubMed] [Google Scholar]
  5. Cooper J. B., McIntyre K., Badasso M. O., Wood S. P., Zhang Y., Garbe T. R., Young D. X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstroms resolution reveals novel dimer-dimer interactions. J Mol Biol. 1995 Mar 3;246(4):531–544. doi: 10.1006/jmbi.1994.0105. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Fee J. A., Shapiro E. R., Moss T. H. Direct evidence for manganese (III) binding to the manganosuperoxide dismutase of Escherichia coli B. J Biol Chem. 1976 Oct 10;251(19):6157–6159. [PubMed] [Google Scholar]
  8. Hsieh Y., Guan Y., Tu C., Bratt P. J., Angerhofer A., Lepock J. R., Hickey M. J., Tainer J. A., Nick H. S., Silverman D. N. Probing the active site of human manganese superoxide dismutase: the role of glutamine 143. Biochemistry. 1998 Apr 7;37(14):4731–4739. doi: 10.1021/bi972395d. [DOI] [PubMed] [Google Scholar]
  9. Jackson S. M., Cooper J. B. An analysis of structural similarity in the iron and manganese superoxide dismutases based on known structures and sequences. Biometals. 1998 Apr;11(2):159–173. doi: 10.1023/a:1009238214394. [DOI] [PubMed] [Google Scholar]
  10. Joshi P., Dennis P. P. Characterization of paralogous and orthologous members of the superoxide dismutase gene family from genera of the halophilic archaebacteria. J Bacteriol. 1993 Mar;175(6):1561–1571. doi: 10.1128/jb.175.6.1561-1571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lah M. S., Dixon M. M., Pattridge K. A., Stallings W. C., Fee J. A., Ludwig M. L. Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry. 1995 Feb 7;34(5):1646–1660. doi: 10.1021/bi00005a021. [DOI] [PubMed] [Google Scholar]
  15. Ludwig M. L., Metzger A. L., Pattridge K. A., Stallings W. C. Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 A resolution. J Mol Biol. 1991 May 20;219(2):335–358. doi: 10.1016/0022-2836(91)90569-r. [DOI] [PubMed] [Google Scholar]
  16. Martin M. E., Byers B. R., Olson M. O., Salin M. L., Arceneaux J. E., Tolbert C. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. J Biol Chem. 1986 Jul 15;261(20):9361–9367. [PubMed] [Google Scholar]
  17. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  18. Meier B., Barra D., Bossa F., Calabrese L., Rotilio G. Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. J Biol Chem. 1982 Dec 10;257(23):13977–13980. [PubMed] [Google Scholar]
  19. Nakayama K. The superoxide dismutase-encoding gene of the obligately anaerobic bacterium Bacteroides gingivalis. Gene. 1990 Nov 30;96(1):149–150. doi: 10.1016/0378-1119(90)90357-w. [DOI] [PubMed] [Google Scholar]
  20. Ose D. E., Fridovich I. Superoxide dismutase. Reversible removal of manganese and its substitution by cobalt, nickel or zinc. J Biol Chem. 1976 Feb 25;251(4):1217–1218. [PubMed] [Google Scholar]
  21. Oue S., Okamoto A., Yano T., Kagamiyama H. Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem. 1999 Jan 22;274(4):2344–2349. doi: 10.1074/jbc.274.4.2344. [DOI] [PubMed] [Google Scholar]
  22. Parker M. W., Blake C. C. Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution. J Mol Biol. 1988 Feb 20;199(4):649–661. doi: 10.1016/0022-2836(88)90308-7. [DOI] [PubMed] [Google Scholar]
  23. Parker M. W., Blake C. C. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 1988 Mar 14;229(2):377–382. doi: 10.1016/0014-5793(88)81160-8. [DOI] [PubMed] [Google Scholar]
  24. Stoddard B. L., Howell P. L., Ringe D., Petsko G. A. The 2.1-A resolution structure of iron superoxide dismutase from Pseudomonas ovalis. Biochemistry. 1990 Sep 25;29(38):8885–8893. doi: 10.1021/bi00490a002. [DOI] [PubMed] [Google Scholar]
  25. Ursby T., Adinolfi B. S., Al-Karadaghi S., De Vendittis E., Bocchini V. Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. J Mol Biol. 1999 Feb 12;286(1):189–205. doi: 10.1006/jmbi.1998.2471. [DOI] [PubMed] [Google Scholar]
  26. Yamakura F., Kobayashi K., Ue H., Konno M. The pH-dependent changes of the enzymic activity and spectroscopic properties of iron-substituted manganese superoxide dismutase. A study on the metal-specific activity of Mn-containing superoxide dismutase. Eur J Biochem. 1995 Feb 1;227(3):700–706. doi: 10.1111/j.1432-1033.1995.tb20191.x. [DOI] [PubMed] [Google Scholar]
  27. Yamakura F., Rardin R. L., Petsko G. A., Ringe D., Hiraoka B. Y., Nakayama K., Fujimura T., Taka H., Murayama K. Inactivation and destruction of conserved Trp159 of Fe-superoxide dismutase from Porphyromonas gingivalis by hydrogen peroxide. Eur J Biochem. 1998 Apr 1;253(1):49–56. doi: 10.1046/j.1432-1327.1998.2530049.x. [DOI] [PubMed] [Google Scholar]
  28. Yamakura F., Suzuki K. Cadmium, chromium, and manganese replacement for iron in iron-superoxide dismutase from Pseudomonas ovalis. J Biochem. 1980 Jul;88(1):191–196. [PubMed] [Google Scholar]
  29. Yamano S., Maruyama T. An azide-insensitive superoxide dismutase from a hyperthermophilic archaeon, Sulfolobus solfataricus. J Biochem. 1999 Jan;125(1):186–193. doi: 10.1093/oxfordjournals.jbchem.a022258. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES