Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jan 15;345(Pt 2):365–375.

Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase.

P M Gómez-Fabre 1, J C Aledo 1, A Del Castillo-Olivares 1, F J Alonso 1, I Núñez De Castro 1, J A Campos 1, J Márquez 1
PMCID: PMC1220766  PMID: 10620514

Abstract

Phosphate-activated glutaminase (GA) is overexpressed in certain types of tumour but its exact role in tumour cell growth and proliferation is unknown. Here we describe the isolation of a full-length cDNA clone of human breast cancer ZR75 cells, by a combination of lambdagt10 cDNA library screening and the rapid amplification of cDNA ends ('RACE') technique. The cDNA of human GA is 2408 nt with a 1806-base open reading frame encoding a 602-residue protein with a predicted molecular mass of 66309 Da. The deduced amino acid sequence contains a putative mitochondrial import presequence of 14 residues at the N-terminal end. Heterologous expression and purification in Escherichia coli yielded a product of the expected molecular size that was recognized by using antibodies against the recombinant human GA. Sequence analyses showed that human GA was highly similar to the rat liver enzyme. Northern gel analysis revealed that the gene is present in human liver, brain and pancreas, in which a major transcript of 2.4 kb was demonstrated, but not in kidney, heart, skeletal muscle, lung or placenta. These results strongly suggest that the first human GA cloned, the GA from ZR-75 breast cancer cells, and presumably those from human liver and brain, are liver-type isoenzymes, in sharp contrast with the present view that considers the kidney type as the isoform expressed in all tissues with GA activity, with the exception of postnatal liver.

Full Text

The Full Text of this article is available as a PDF (306.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aledo J. C., Segura J. A., Medina M. A., Alonso F. J., Núez de Castro I., Márquez J. Phosphate-activated glutaminase expression during tumor development. FEBS Lett. 1994 Mar 14;341(1):39–42. doi: 10.1016/0014-5793(94)80236-x. [DOI] [PubMed] [Google Scholar]
  2. Aledo J. C., de Pedro E., Gómez-Fabre P. M., Núez de Castro I., Márquez J. Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase. Biochim Biophys Acta. 1997 Jan 31;1323(2):173–184. doi: 10.1016/s0005-2736(96)00189-7. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banner C., Hwang J. J., Shapiro R. A., Wenthold R. J., Nakatani Y., Lampel K. A., Thomas J. W., Huie D., Curthoys N. P. Isolation of a cDNA for rat brain glutaminase. Brain Res. 1988 Jun;427(3):247–254. doi: 10.1016/0169-328x(88)90047-2. [DOI] [PubMed] [Google Scholar]
  5. Brand K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J. 1985 Jun 1;228(2):353–361. doi: 10.1042/bj2280353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campos J. A., Aledo J. C., del Castillo-Olivares A., del Valle A. E., Núez de Castro I., Márquez J. Involvement of essential cysteine and histidine residues in the activity of isolated glutaminase from tumour cells. Biochim Biophys Acta. 1998 Dec 8;1429(1):275–283. doi: 10.1016/s0167-4838(98)00240-4. [DOI] [PubMed] [Google Scholar]
  7. Catane R., Von Hoff D. D., Glaubiger D. L., Muggia F. M. Azaserine, DON, and azotomycin: three diazo analogs of L-glutamine with clinical antitumor activity. Cancer Treat Rep. 1979 Jun;63(6):1033–1038. [PubMed] [Google Scholar]
  8. Chaparian M. G., Evans D. R. The catalytic mechanism of the amidotransferase domain of the Syrian hamster multifunctional protein CAD. Evidence for a CAD-glutamyl covalent intermediate in the formation of carbamyl phosphate. J Biol Chem. 1991 Feb 25;266(6):3387–3395. [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Chung-Bok M. I., Vincent N., Jhala U., Watford M. Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter. Biochem J. 1997 May 15;324(Pt 1):193–200. doi: 10.1042/bj3240193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Claros M. G., Brunak S., von Heijne G. Prediction of N-terminal protein sorting signals. Curr Opin Struct Biol. 1997 Jun;7(3):394–398. doi: 10.1016/s0959-440x(97)80057-7. [DOI] [PubMed] [Google Scholar]
  12. Curthoys N. P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. [DOI] [PubMed] [Google Scholar]
  13. DiGiovanni S. R., Knepper M. A. An RT-PCR approach to study the regulation of mRNA levels for phosphate-dependent glutaminase. Contrib Nephrol. 1994;110:81–87. doi: 10.1159/000423402. [DOI] [PubMed] [Google Scholar]
  14. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  15. Engel L. W., Young N. A., Tralka T. S., Lippman M. E., O'Brien S. J., Joyce M. J. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 1978 Oct;38(10):3352–3364. [PubMed] [Google Scholar]
  16. Holcenberg J., Anderson T., Ritch P., Skibba J., Howser D., Ring B., Adams S., Helmsworth M. Intraperitoneal chemotherapy with melphalan plus glutaminase. Cancer Res. 1983 Mar;43(3):1381–1388. [PubMed] [Google Scholar]
  17. Hwang J. J., Perera S., Shapiro R. A., Curthoys N. P. Mechanism of altered renal glutaminase gene expression in response to chronic acidosis. Biochemistry. 1991 Jul 30;30(30):7522–7526. doi: 10.1021/bi00244a022. [DOI] [PubMed] [Google Scholar]
  18. Kien C. L., Holcenberg J. S. Nitrogen utilization in mice bearing Ehrlich ascites tumor treated with Acinetobacter glutaminase-asparaginase. Cancer Res. 1981 Jun;41(6):2051–2055. [PubMed] [Google Scholar]
  19. Knox W. E., Linder M., Friedell G. H. A series of transplantable rat mammary tumors with graded differentiation, growth rate, and glutaminase content. Cancer Res. 1970 Feb;30(2):283–287. [PubMed] [Google Scholar]
  20. Kovacević Z., Morris H. P. The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res. 1972 Feb;32(2):326–333. [PubMed] [Google Scholar]
  21. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  23. Linder-Horowitz M., Knox W. E., Morris H. P. Glutaminase activities and growth rates of rat hepatomas. Cancer Res. 1969 Jun;29(6):1195–1199. [PubMed] [Google Scholar]
  24. Matsuno T., Goto I. Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res. 1992 Mar 1;52(5):1192–1194. [PubMed] [Google Scholar]
  25. Medina M. A., Sánchez-Jiménez F., Márquez J., Rodríguez Quesada A., Núez de Castro I. Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem. 1992 Jul 6;113(1):1–15. doi: 10.1007/BF00230880. [DOI] [PubMed] [Google Scholar]
  26. Mei B., Zalkin H. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases. J Biol Chem. 1989 Oct 5;264(28):16613–16619. [PubMed] [Google Scholar]
  27. Perera S. Y., Voith D. M., Curthoys N. P. Biosynthesis and processing of mitochondrial glutaminase in HTC hepatoma cells. Biochem J. 1991 Jan 15;273(Pt 2):265–270. doi: 10.1042/bj2730265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Porter D., Hansen W. R., Taylor L., Curthoys N. P. Differential expression of multiple glutaminase mRNAs in LLC-PK1-F+ cells. Am J Physiol. 1995 Sep;269(3 Pt 2):F363–F373. doi: 10.1152/ajprenal.1995.269.3.F363. [DOI] [PubMed] [Google Scholar]
  29. Quesada A. R., Medina M. A., Márquez J., Sánchez-Jiménez F. M., Núez de Castro I. Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res. 1988 Mar 15;48(6):1551–1553. [PubMed] [Google Scholar]
  30. Reitzer L. J., Wice B. M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979 Apr 25;254(8):2669–2676. [PubMed] [Google Scholar]
  31. Roberts J., Schmid F. A., Rosenfeld H. J. Biologic and antineoplastic effects of enzyme-mediated in vivo depletion of L-glutamine, L-tryptophan, and L-histidine. Cancer Treat Rep. 1979 Jun;63(6):1045–1054. [PubMed] [Google Scholar]
  32. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schraml P., Shipman R., Colombi M., Ludwig C. U. Identification of genes differentially expressed in normal lung and non-small cell lung carcinoma tissue. Cancer Res. 1994 Oct 1;54(19):5236–5240. [PubMed] [Google Scholar]
  35. Segura J. A., Aledo J. C., Gómez-Biedma S., Núez de Castro I., Márquez J. Tumor glutaminase purification. Protein Expr Purif. 1995 Jun;6(3):343–351. doi: 10.1006/prep.1995.1045. [DOI] [PubMed] [Google Scholar]
  36. Shapiro R. A., Farrell L., Srinivasan M., Curthoys N. P. Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem. 1991 Oct 5;266(28):18792–18796. [PubMed] [Google Scholar]
  37. Simmer J. P., Kelly R. E., Rinker A. G., Jr, Scully J. L., Evans D. R. Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J Biol Chem. 1990 Jun 25;265(18):10395–10402. [PubMed] [Google Scholar]
  38. Smith E. M., Watford M. Molecular cloning of a cDNA for rat hepatic glutaminase. Sequence similarity to kidney-type glutaminase. J Biol Chem. 1990 Jun 25;265(18):10631–10636. [PubMed] [Google Scholar]
  39. Souba W. W. Glutamine and cancer. Ann Surg. 1993 Dec;218(6):715–728. doi: 10.1097/00000658-199312000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spittler A., Oehler R., Goetzinger P., Holzer S., Reissner C. M., Leutmezer F., Rath V., Wrba F., Fuegger R., Boltz-Nitulescu G. Low glutamine concentrations induce phenotypical and functional differentiation of U937 myelomonocytic cells. J Nutr. 1997 Nov;127(11):2151–2157. doi: 10.1093/jn/127.11.2151. [DOI] [PubMed] [Google Scholar]
  41. Turowski G. A., Rashid Z., Hong F., Madri J. A., Basson M. D. Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines. Cancer Res. 1994 Nov 15;54(22):5974–5980. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES