Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):445–451.

Four isoforms of serum response factor that increase or inhibit smooth-muscle-specific promoter activity.

P R Kemp 1, J C Metcalfe 1
PMCID: PMC1220776  PMID: 10642500

Abstract

Serum response factor (SRF) is a key transcriptional activator of the c-fos gene and of muscle-specific gene expression. We have identified four forms of the SRF coding sequence, SRF-L (the previously identified form), SRF-M, SRF-S and SRF-I, that are produced by alternative splicing. The new forms of SRF lack regions of the C-terminal transactivation domain by splicing out of exon 5 (SRF-M), exons 4 and 5 (SRF-S) and exons 3, 4 and 5 (SRF-I). SRF-M is expressed at similar levels to SRF-L in differentiated vascular smooth-muscle cells and skeletal-muscle cells, whereas SRF-L is the predominant form in many other tissues. SRF-S expression is restricted to vascular smooth muscle and SRF-I expression is restricted to the embryo. Transfection of SRF-L and SRF-M into C(2)C(12) cells showed that both forms are transactivators of the promoter of the smooth-muscle-specific gene SM22alpha, whereas SRF-I acted as a dominant negative form of SRF.

Full Text

The Full Text of this article is available as a PDF (193.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arsenian S., Weinhold B., Oelgeschläger M., Rüther U., Nordheim A. Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 1998 Nov 2;17(21):6289–6299. doi: 10.1093/emboj/17.21.6289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belaguli N. S., Schildmeyer L. A., Schwartz R. J. Organization and myogenic restricted expression of the murine serum response factor gene. A role for autoregulation. J Biol Chem. 1997 Jul 18;272(29):18222–18231. doi: 10.1074/jbc.272.29.18222. [DOI] [PubMed] [Google Scholar]
  3. Biesiada E., Hamamori Y., Kedes L., Sartorelli V. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol Cell Biol. 1999 Apr;19(4):2577–2584. doi: 10.1128/mcb.19.4.2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blank R. S., McQuinn T. C., Yin K. C., Thompson M. M., Takeyasu K., Schwartz R. J., Owens G. K. Elements of the smooth muscle alpha-actin promoter required in cis for transcriptional activation in smooth muscle. Evidence for cell type-specific regulation. J Biol Chem. 1992 Jan 15;267(2):984–989. [PubMed] [Google Scholar]
  5. Boulden A. M., Sealy L. J. Maximal serum stimulation of the c-fos serum response element requires both the serum response factor and a novel binding factor, SRE-binding protein. Mol Cell Biol. 1992 Oct;12(10):4769–4783. doi: 10.1128/mcb.12.10.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C. Y., Croissant J., Majesky M., Topouzis S., McQuinn T., Frankovsky M. J., Schwartz R. J. Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements. Dev Genet. 1996;19(2):119–130. doi: 10.1002/(SICI)1520-6408(1996)19:2<119::AID-DVG3>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  7. Chen C. Y., Schwartz R. J. Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Mol Endocrinol. 1997 Jun;11(6):812–822. doi: 10.1210/mend.11.6.0015. [DOI] [PubMed] [Google Scholar]
  8. Chen C. Y., Schwartz R. J. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol. 1996 Nov;16(11):6372–6384. doi: 10.1128/mcb.16.11.6372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Croissant J. D., Kim J. H., Eichele G., Goering L., Lough J., Prywes R., Schwartz R. J. Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev Biol. 1996 Jul 10;177(1):250–264. doi: 10.1006/dbio.1996.0160. [DOI] [PubMed] [Google Scholar]
  10. Gauthier-Rouviere C., Vandromme M., Tuil D., Lautredou N., Morris M., Soulez M., Kahn A., Fernandez A., Lamb N. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell. 1996 May;7(5):719–729. doi: 10.1091/mbc.7.5.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Groisman R., Masutani H., Leibovitch M. P., Robin P., Soudant I., Trouche D., Harel-Bellan A. Physical interaction between the mitogen-responsive serum response factor and myogenic basic-helix-loop-helix proteins. J Biol Chem. 1996 Mar 1;271(9):5258–5264. doi: 10.1074/jbc.271.9.5258. [DOI] [PubMed] [Google Scholar]
  12. Hautmann M. B., Madsen C. S., Mack C. P., Owens G. K. Substitution of the degenerate smooth muscle (SM) alpha-actin CC(A/T-rich)6GG elements with c-fos serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin II inducibility. J Biol Chem. 1998 Apr 3;273(14):8398–8406. doi: 10.1074/jbc.273.14.8398. [DOI] [PubMed] [Google Scholar]
  13. Hautmann M. B., Thompson M. M., Swartz E. A., Olson E. N., Owens G. K. Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ Res. 1997 Oct;81(4):600–610. doi: 10.1161/01.res.81.4.600. [DOI] [PubMed] [Google Scholar]
  14. Hill C. S., Marais R., John S., Wynne J., Dalton S., Treisman R. Functional analysis of a growth factor-responsive transcription factor complex. Cell. 1993 Apr 23;73(2):395–406. doi: 10.1016/0092-8674(93)90238-l. [DOI] [PubMed] [Google Scholar]
  15. Hill C. S., Wynne J., Treisman R. Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. EMBO J. 1994 Nov 15;13(22):5421–5432. doi: 10.1002/j.1460-2075.1994.tb06877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang W. Y., Chen J. J., Shih N., Liew C. C. Multiple muscle-specific regulatory elements are associated with a DNase I hypersensitive site of the cardiac beta-myosin heavy-chain gene. Biochem J. 1997 Oct 15;327(Pt 2):507–512. doi: 10.1042/bj3270507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Janknecht R., Ernst W. H., Houthaeve T., Nordheim A. C-terminal phosphorylation of the serum-response factor. Eur J Biochem. 1993 Sep 1;216(2):469–475. doi: 10.1111/j.1432-1033.1993.tb18165.x. [DOI] [PubMed] [Google Scholar]
  18. Janknecht R., Hipskind R. A., Houthaeve T., Nordheim A., Stunnenberg H. G. Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J. 1992 Mar;11(3):1045–1054. doi: 10.1002/j.1460-2075.1992.tb05143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kemp P. R., Grainger D. J., Shanahan C. M., Weissberg P. L., Metcalfe J. C. The Id gene is activated by serum but is not required for de-differentiation in rat vascular smooth muscle cells. Biochem J. 1991 Jul 1;277(Pt 1):285–288. doi: 10.1042/bj2770285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kemp P. R., Metcalfe J. C., Grainger D. J. ID--a dominant negative regulator of skeletal muscle differentiation--is not involved in maturation or differentiation of vascular smooth muscle cells. FEBS Lett. 1995 Jul 10;368(1):81–86. doi: 10.1016/0014-5793(95)00605-9. [DOI] [PubMed] [Google Scholar]
  21. Kemp P. R., Osbourn J. K., Grainger D. J., Metcalfe J. C. Cloning and analysis of the promoter region of the rat SM22 alpha gene. Biochem J. 1995 Sep 15;310(Pt 3):1037–1043. doi: 10.1042/bj3101037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim S., Ip H. S., Lu M. M., Clendenin C., Parmacek M. S. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages. Mol Cell Biol. 1997 Apr;17(4):2266–2278. doi: 10.1128/mcb.17.4.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li L., Liu Z., Mercer B., Overbeek P., Olson E. N. Evidence for serum response factor-mediated regulatory networks governing SM22alpha transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol. 1997 Jul 15;187(2):311–321. doi: 10.1006/dbio.1997.8621. [DOI] [PubMed] [Google Scholar]
  24. Ling Y., Lakey J. H., Roberts C. E., Sharrocks A. D. Molecular characterization of the B-box protein-protein interaction motif of the ETS-domain transcription factor Elk-1. EMBO J. 1997 May 1;16(9):2431–2440. doi: 10.1093/emboj/16.9.2431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu S. H., Ma J. T., Yueh A. Y., Lees-Miller S. P., Anderson C. W., Ng S. Y. The carboxyl-terminal transactivation domain of human serum response factor contains DNA-activated protein kinase phosphorylation sites. J Biol Chem. 1993 Oct 5;268(28):21147–21154. [PubMed] [Google Scholar]
  26. Mack C. P., Owens G. K. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5' and first intron promoter regions. Circ Res. 1999 Apr 16;84(7):852–861. doi: 10.1161/01.res.84.7.852. [DOI] [PubMed] [Google Scholar]
  27. Madsen C. S., Hershey J. C., Hautmann M. B., White S. L., Owens G. K. Expression of the smooth muscle myosin heavy chain gene is regulated by a negative-acting GC-rich element located between two positive-acting serum response factor-binding elements. J Biol Chem. 1997 Mar 7;272(10):6332–6340. doi: 10.1074/jbc.272.10.6332. [DOI] [PubMed] [Google Scholar]
  28. Marais R. M., Hsuan J. J., McGuigan C., Wynne J., Treisman R. Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange. EMBO J. 1992 Jan;11(1):97–105. doi: 10.1002/j.1460-2075.1992.tb05032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Misra R. P., Rivera V. M., Wang J. M., Fan P. D., Greenberg M. E. The serum response factor is extensively modified by phosphorylation following its synthesis in serum-stimulated fibroblasts. Mol Cell Biol. 1991 Sep;11(9):4545–4554. doi: 10.1128/mcb.11.9.4545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pari G., Jardine K., McBurney M. W. Multiple CArG boxes in the human cardiac actin gene promoter required for expression in embryonic cardiac muscle cells developing in vitro from embryonal carcinoma cells. Mol Cell Biol. 1991 Sep;11(9):4796–4803. doi: 10.1128/mcb.11.9.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Qasba P., Danishefsky K., Gadot M., Siddiqui M. A. Functional analysis of a CArG-like promoter element in cardiac myosin light chain 2 gene. Cell Mol Biol (Noisy-le-grand) 1992 Aug-Sep;38(5-6):561–569. [PubMed] [Google Scholar]
  32. Shaw P. E., Schröter H., Nordheim A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell. 1989 Feb 24;56(4):563–572. doi: 10.1016/0092-8674(89)90579-5. [DOI] [PubMed] [Google Scholar]
  33. Solway J., Seltzer J., Samaha F. F., Kim S., Alger L. E., Niu Q., Morrisey E. E., Ip H. S., Parmacek M. S. Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem. 1995 Jun 2;270(22):13460–13469. doi: 10.1074/jbc.270.22.13460. [DOI] [PubMed] [Google Scholar]
  34. Treisman R. Identification and purification of a polypeptide that binds to the c-fos serum response element. EMBO J. 1987 Sep;6(9):2711–2717. doi: 10.1002/j.1460-2075.1987.tb02564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Treisman R. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell. 1986 Aug 15;46(4):567–574. doi: 10.1016/0092-8674(86)90882-2. [DOI] [PubMed] [Google Scholar]
  36. Treisman R. Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev. 1994 Feb;4(1):96–101. doi: 10.1016/0959-437x(94)90097-3. [DOI] [PubMed] [Google Scholar]
  37. Ueyama T., Kawashima S., Sakoda T., Hirata K. I., Ohashi Y., Yamochi W., Akita H., Yokoyama M. Transforming growth factor-beta1 and protein kinase C synergistically activate the c-fos serum response element in myocardial cells. J Mol Cell Cardiol. 1998 Mar;30(3):551–562. doi: 10.1006/jmcc.1997.0619. [DOI] [PubMed] [Google Scholar]
  38. Wieczorek D. F., Smith C. W., Nadal-Ginard B. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing. Mol Cell Biol. 1988 Feb;8(2):679–694. doi: 10.1128/mcb.8.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zinck R., Hipskind R. A., Pingoud V., Nordheim A. c-fos transcriptional activation and repression correlate temporally with the phosphorylation status of TCF. EMBO J. 1993 Jun;12(6):2377–2387. doi: 10.1002/j.1460-2075.1993.tb05892.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES