Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):459–466.

Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins.

E Ogier-Denis 1, C Bauvy 1, F Cluzeaud 1, A Vandewalle 1, P Codogno 1
PMCID: PMC1220778  PMID: 10642502

Abstract

The macroautophagic-lysosomal pathway is a bulk degradative process for cytosolic proteins and organelles including the endoplasmic reticulum (ER). We have previously shown that the human colonic carcinoma HT-29 cell population is characterized by a high rate of autophagic degradation of N-linked glycoproteins substituted with ER-type glycans. In the present work we demonstrate that glucosidase inhibitors [castanospermine (CST) and deoxynojirimycin] have a stabilizing effect on newly synthesized glucosylated N-linked glycoproteins and impaired their lysosomal delivery as shown by subcellular fractionation on Percoll gradients. The inhibition of macroautophagy was restricted to N-linked glycoproteins because macroautophagic parameters such as the rate of sequestration of cytosolic markers and the fractional volume occupied by autophagic vacuoles were not affected in CST-treated cells. The protection of glucosylated glycoproteins from autophagic sequestration was also observed in inhibitor-treated Chinese hamster ovary (CHO) cells and in Lec23 cells (a CHO mutant deficient in glucosidase I activity). The interaction of glucosylated glycoproteins with the ER chaperone binding protein (BiP) was prolonged in inhibitor-treated cells in comparison with untreated CHO cells. These results show that the removal of glucose from N-glycans of glycoproteins is a key event for their delivery to the autophagic pathway and that interaction with BiP could prevent or delay newly synthesized glucosylated N-linked glycoproteins from being sequestered by the autophagic pathway.

Full Text

The Full Text of this article is available as a PDF (232.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blommaart E. F., Luiken J. J., Blommaart P. J., van Woerkom G. M., Meijer A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995 Feb 3;270(5):2320–2326. doi: 10.1074/jbc.270.5.2320. [DOI] [PubMed] [Google Scholar]
  2. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
  3. Dahms N. M., Lobel P., Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989 Jul 25;264(21):12115–12118. [PubMed] [Google Scholar]
  4. Dunn W. A., Jr Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 1994 Apr;4(4):139–143. doi: 10.1016/0962-8924(94)90069-8. [DOI] [PubMed] [Google Scholar]
  5. Dunn W. A., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923–1933. doi: 10.1083/jcb.110.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunn W. A., Jr Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1935–1945. doi: 10.1083/jcb.110.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freedman R. B. Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell. 1989 Jun 30;57(7):1069–1072. doi: 10.1016/0092-8674(89)90043-3. [DOI] [PubMed] [Google Scholar]
  8. Ghidoni R., Houri J. J., Giuliani A., Ogier-Denis E., Parolari E., Botti S., Bauvy C., Codogno P. The metabolism of sphingo(glyco)lipids is correlated with the differentiation-dependent autophagic pathway in HT-29 cells. Eur J Biochem. 1996 Apr 15;237(2):454–459. doi: 10.1111/j.1432-1033.1996.0454k.x. [DOI] [PubMed] [Google Scholar]
  9. Haas I. G. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia. 1994 Nov 30;50(11-12):1012–1020. doi: 10.1007/BF01923455. [DOI] [PubMed] [Google Scholar]
  10. Hamman B. D., Hendershot L. M., Johnson A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell. 1998 Mar 20;92(6):747–758. doi: 10.1016/s0092-8674(00)81403-8. [DOI] [PubMed] [Google Scholar]
  11. Hammond C., Helenius A. Folding of VSV G protein: sequential interaction with BiP and calnexin. Science. 1994 Oct 21;266(5184):456–458. doi: 10.1126/science.7939687. [DOI] [PubMed] [Google Scholar]
  12. Hammond C., Helenius A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol. 1994 Jul;126(1):41–52. doi: 10.1083/jcb.126.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Houri J. J., Ogier-Denis E., Bauvy C., Aubery M., Sapin C., Trugnan G., Codogno P. Swainsonine is a useful tool to monitor the intracellular traffic of N-linked glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells. Eur J Biochem. 1992 May 1;205(3):1169–1174. doi: 10.1111/j.1432-1033.1992.tb16887.x. [DOI] [PubMed] [Google Scholar]
  14. Houri J. J., Ogier-Denis E., De Stefanis D., Bauvy C., Baccino F. M., Isidoro C., Codogno P. Differentiation-dependent autophagy controls the fate of newly synthesized N-linked glycoproteins in the colon adenocarcinoma HT-29 cell line. Biochem J. 1995 Jul 15;309(Pt 2):521–527. doi: 10.1042/bj3090521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kearse K. P., Williams D. B., Singer A. Persistence of glucose residues on core oligosaccharides prevents association of TCR alpha and TCR beta proteins with calnexin and results specifically in accelerated degradation of nascent TCR alpha proteins within the endoplasmic reticulum. EMBO J. 1994 Aug 15;13(16):3678–3686. doi: 10.1002/j.1460-2075.1994.tb06677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kopitz J., Kisen G. O., Gordon P. B., Bohley P., Seglen P. O. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol. 1990 Sep;111(3):941–953. doi: 10.1083/jcb.111.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  18. Kuznetsov G., Chen L. B., Nigam S. K. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem. 1997 Jan 31;272(5):3057–3063. doi: 10.1074/jbc.272.5.3057. [DOI] [PubMed] [Google Scholar]
  19. Lardeux B. R., Mortimore G. E. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. J Biol Chem. 1987 Oct 25;262(30):14514–14519. [PubMed] [Google Scholar]
  20. Lenk S. E., Bhat D., Blakeney W., Dunn W. A., Jr Effects of streptozotocin-induced diabetes on rough endoplasmic reticulum and lysosomes of rat liver. Am J Physiol. 1992 Nov;263(5 Pt 1):E856–E862. doi: 10.1152/ajpendo.1992.263.5.E856. [DOI] [PubMed] [Google Scholar]
  21. Luiken J. J., van den Berg M., Heikoop J. C., Meijer A. J. Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett. 1992 Jun 8;304(1):93–97. doi: 10.1016/0014-5793(92)80596-9. [DOI] [PubMed] [Google Scholar]
  22. Marzella L., Ahlberg J., Glaumann H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol. 1982 Apr;93(1):144–154. doi: 10.1083/jcb.93.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore S. E., Spiro R. G. Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules. J Biol Chem. 1993 Feb 25;268(6):3809–3812. [PubMed] [Google Scholar]
  24. Moore S. E., Spiro R. G. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem. 1994 Apr 29;269(17):12715–12721. [PubMed] [Google Scholar]
  25. Mortimore G. E., Pösö A. R., Kadowaki M., Wert J. J., Jr Multiphasic control of hepatic protein degradation by regulatory amino acids. General features and hormonal modulation. J Biol Chem. 1987 Dec 5;262(34):16322–16327. [PubMed] [Google Scholar]
  26. Munro S., Pelham H. R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986 Jul 18;46(2):291–300. doi: 10.1016/0092-8674(86)90746-4. [DOI] [PubMed] [Google Scholar]
  27. Muresan Z., Arvan P. Enhanced binding to the molecular chaperone BiP slows thyroglobulin export from the endoplasmic reticulum. Mol Endocrinol. 1998 Mar;12(3):458–467. doi: 10.1210/mend.12.3.0069. [DOI] [PubMed] [Google Scholar]
  28. Nicchitta C. V., Blobel G. Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell. 1993 Jun 4;73(5):989–998. doi: 10.1016/0092-8674(93)90276-v. [DOI] [PubMed] [Google Scholar]
  29. Novikoff P. M., Touster O., Novikoff A. B., Tulsiani D. P. Effects of swainsonine on rat liver and kidney: biochemical and morphological studies. J Cell Biol. 1985 Aug;101(2):339–349. doi: 10.1083/jcb.101.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ogier-Denis E., Codogno P., Chantret I., Trugnan G. The processing of asparagine-linked oligosaccharides in HT-29 cells is a function of their state of enterocytic differentiation. An accumulation of Man9,8-GlcNAc2-Asn species is indicative of an impaired N-glycan trimming in undifferentiated cells. J Biol Chem. 1988 May 5;263(13):6031–6037. [PubMed] [Google Scholar]
  31. Ogier-Denis E., Couvineau A., Maoret J. J., Houri J. J., Bauvy C., De Stefanis D., Isidoro C., Laburthe M., Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem. 1995 Jan 6;270(1):13–16. doi: 10.1074/jbc.270.1.13. [DOI] [PubMed] [Google Scholar]
  32. Ogier-Denis E., Houri J. J., Bauvy C., Codogno P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem. 1996 Nov 8;271(45):28593–28600. doi: 10.1074/jbc.271.45.28593. [DOI] [PubMed] [Google Scholar]
  33. Pan Y. T., Hori H., Saul R., Sanford B. A., Molyneux R. J., Elbein A. D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983 Aug 2;22(16):3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
  34. Partin J. C., Schubert W. K., Partin J. S. Mitochondrial ultrastructure in Reye's syndrome (encephalopathy and fatty degeneration of the viscera). N Engl J Med. 1971 Dec 9;285(24):1339–1343. doi: 10.1056/NEJM197112092852402. [DOI] [PubMed] [Google Scholar]
  35. Punnonen E. L., Autio S., Kaija H., Reunanen H. Autophagic vacuoles fuse with the prelysosomal compartment in cultured rat fibroblasts. Eur J Cell Biol. 1993 Jun;61(1):54–66. [PubMed] [Google Scholar]
  36. Ray M. K., Yang J., Sundaram S., Stanley P. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I. J Biol Chem. 1991 Dec 5;266(34):22818–22825. [PubMed] [Google Scholar]
  37. Saunier B., Kilker R. D., Jr, Tkacz J. S., Quaroni A., Herscovics A. Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem. 1982 Dec 10;257(23):14155–14161. [PubMed] [Google Scholar]
  38. Schworer C. M., Shiffer K. A., Mortimore G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981 Jul 25;256(14):7652–7658. [PubMed] [Google Scholar]
  39. Seglen P. O., Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia. 1992 Feb 15;48(2):158–172. doi: 10.1007/BF01923509. [DOI] [PubMed] [Google Scholar]
  40. Seglen P. O., Gordon P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889–1892. doi: 10.1073/pnas.79.6.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spiro R. G., Zhu Q., Bhoyroo V., Söling H. D. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem. 1996 May 10;271(19):11588–11594. doi: 10.1074/jbc.271.19.11588. [DOI] [PubMed] [Google Scholar]
  42. Tatu U., Helenius A. Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol. 1997 Feb 10;136(3):555–565. doi: 10.1083/jcb.136.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Trugnan G., Ogier-Denis E., Sapin C., Darmoul D., Bauvy C., Aubery M., Codogno P. The N-glycan processing in HT-29 cells is a function of their state of enterocytic differentiation. Evidence for an atypical traffic associated with change in polypeptide stability in undifferentiated HT-29 cells. J Biol Chem. 1991 Nov 5;266(31):20849–20855. [PubMed] [Google Scholar]
  44. Tulsiani D. R., Touster O. Evidence that swainsonine pretreatment of rats leads to the formation of autophagic vacuoles and endosomes with decreased capacity to mature to, or fuse with, active lysosomes. Arch Biochem Biophys. 1992 Aug 1;296(2):556–561. doi: 10.1016/0003-9861(92)90610-9. [DOI] [PubMed] [Google Scholar]
  45. Ueno T., Muno D., Kominami E. Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J Biol Chem. 1991 Oct 5;266(28):18995–18999. [PubMed] [Google Scholar]
  46. Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
  47. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamamoto A., Masaki R., Fukui Y., Tashiro Y. Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepatocytes. J Histochem Cytochem. 1990 Nov;38(11):1571–1581. doi: 10.1177/38.11.2212617. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES