Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):487–494.

L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases.

G Dodt 1, D G Kim 1, S A Reimann 1, B E Reuber 1, K McCabe 1, S J Gould 1, S J Mihalik 1
PMCID: PMC1220782  PMID: 10642506

Abstract

L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, we cloned the associated human gene and expressed its protein product. The cDNA was cloned with the use of a reverse genetics approach based on the amino acid sequence obtained from purified L-pipecolic acid oxidase from monkey. The complete cDNA, obtained by conventional library screening and 5' rapid amplification of cDNA ends, encompassed an open reading frame of 1170 bases, translating to a 390-residue protein. The translated protein terminated with the sequence AHL, a peroxisomal targeting signal 1. Indirect immunofluorescence studies showed that the protein product was expressed in human fibroblasts in a punctate pattern that co-localized with the peroxisomal enzyme catalase. A BLAST search with the amino acid sequence showed 31% identity and 53% similarity with Bacillus sp. NS-129 monomeric sarcosine oxidase, as well as similarity to all sarcosine oxidases and dehydrogenases. No similarity was found to the peroxisomal D-amino acid oxidases. The recombinant enzyme oxidized both L-pipecolic acid and sarcosine. However, PBD patients who lack the enzyme activity accumulate only L-pipecolic acid, suggesting that in humans in vivo, this enzyme is involved mainly in the degradation of L-pipecolic acid.

Full Text

The Full Text of this article is available as a PDF (244.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. BASSO L. V., RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. delta1-Piperideine-6-carboxylic acid and alpha-aminoadipic acid-delta-semial-dehyde. J Biol Chem. 1962 Jul;237:2239–2245. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chang Y. F., Adams E. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J Bacteriol. 1974 Feb;117(2):753–764. doi: 10.1128/jb.117.2.753-764.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang Y. F., Myslinski N. R. Effects of L-lysine and its metabolites on pentylenetetrazol-induced seizures. Neurosci Lett. 1985 Aug 16;59(1):79–84. doi: 10.1016/0304-3940(85)90218-6. [DOI] [PubMed] [Google Scholar]
  6. Chlumsky L. J., Zhang L., Jorns M. S. Sequence analysis of sarcosine oxidase and nearby genes reveals homologies with key enzymes of folate one-carbon metabolism. J Biol Chem. 1995 Aug 4;270(31):18252–18259. doi: 10.1074/jbc.270.31.18252. [DOI] [PubMed] [Google Scholar]
  7. Cook R. J., Misono K. S., Wagner C. The amino acid sequences of the flavin-peptides of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria. J Biol Chem. 1985 Oct 25;260(24):12998–13002. [PubMed] [Google Scholar]
  8. Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gutierrez M. D., Giacobini E. Identification and characterization of pipecolic acid binding sites in mouse brain. Neurochem Res. 1985 May;10(5):691–702. doi: 10.1007/BF00964407. [DOI] [PubMed] [Google Scholar]
  10. Herbst R., Barton J. L., Nicklin M. J. A mammalian homolog of the bacterial monomeric sarcosine oxidases maps to mouse chromosome 11, close to Cryba1. Genomics. 1997 Dec 15;46(3):480–482. doi: 10.1006/geno.1997.5050. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Mihalik S. J., McGuinness M., Watkins P. A. Purification and characterization of peroxisomal L-pipecolic acid oxidase from monkey liver. J Biol Chem. 1991 Mar 15;266(8):4822–4830. [PubMed] [Google Scholar]
  13. Mihalik S. J., Moser H. W., Watkins P. A., Danks D. M., Poulos A., Rhead W. J. Peroxisomal L-pipecolic acid oxidation is deficient in liver from Zellweger syndrome patients. Pediatr Res. 1989 May;25(5):548–552. doi: 10.1203/00006450-198905000-00024. [DOI] [PubMed] [Google Scholar]
  14. Mihalik S. J., Rhead W. J. L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J Biol Chem. 1989 Feb 15;264(5):2509–2517. [PubMed] [Google Scholar]
  15. Mihalik S. J., Rhead W. J. Species variation in organellar location and activity of L-pipecolic acid oxidation in mammals. J Comp Physiol B. 1991;160(6):671–676. doi: 10.1007/BF00571266. [DOI] [PubMed] [Google Scholar]
  16. Nishiya Y., Zuihara S., Imanaka T. Active site analysis and stabilization of sarcosine oxidase by the substitution of cysteine residues. Appl Environ Microbiol. 1995 Jan;61(1):367–370. doi: 10.1128/aem.61.1.367-370.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  18. Rao V. V., Tsai M. J., Pan X., Chang Y. F. L-pipecolic acid oxidation in rat: subcellular localization and developmental study. Biochim Biophys Acta. 1993 Jun 24;1164(1):29–35. doi: 10.1016/0167-4838(93)90108-4. [DOI] [PubMed] [Google Scholar]
  19. Reuber B. E., Karl C., Reimann S. A., Mihalik S. J., Dodt G. Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase. J Biol Chem. 1997 Mar 7;272(10):6766–6776. doi: 10.1074/jbc.272.10.6766. [DOI] [PubMed] [Google Scholar]
  20. Slawecki M. L., Dodt G., Steinberg S., Moser A. B., Moser H. W., Gould S. J. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J Cell Sci. 1995 May;108(Pt 5):1817–1829. doi: 10.1242/jcs.108.5.1817. [DOI] [PubMed] [Google Scholar]
  21. Thomas G. H., Haslam R. H., Batshaw M. L., Capute A. J., Neidengard L., Ransom J. L. Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin Genet. 1975 Nov;8(5):376–382. doi: 10.1111/j.1399-0004.1975.tb01517.x. [DOI] [PubMed] [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagner M. A., Schuman Jorns M. Folate utilization by monomeric versus heterotetrameric sarcosine oxidases. Arch Biochem Biophys. 1997 Jun 1;342(1):176–181. doi: 10.1006/abbi.1997.0106. [DOI] [PubMed] [Google Scholar]
  24. Wanders R. J., Romeyn G. J., van Roermund C. W., Schutgens R. B., van den Bosch H., Tager J. M. Identification of L-pipecolate oxidase in human liver and its deficiency in the Zellweger syndrome. Biochem Biophys Res Commun. 1988 Jul 15;154(1):33–38. doi: 10.1016/0006-291x(88)90645-6. [DOI] [PubMed] [Google Scholar]
  25. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  26. Willie A., Edmondson D. E., Jorns M. S. Sarcosine oxidase contains a novel covalently bound FMN. Biochemistry. 1996 Apr 23;35(16):5292–5299. doi: 10.1021/bi952995h. [DOI] [PubMed] [Google Scholar]
  27. Yoshida N., Sakai Y., Serata M., Tani Y., Kato N. Distribution and properties of fructosyl amino acid oxidase in fungi. Appl Environ Microbiol. 1995 Dec;61(12):4487–4489. doi: 10.1128/aem.61.12.4487-4489.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES