Abstract
MG2 (the MUC7 gene product) is a low-molecular-mass mucin found in human submandibular/sublingual secretions. This mucin is believed to agglutinate a variety of microbes and thus is considered an important component of the non-immune host defence system in the oral cavity. We have shown that MUC7 can bind to cariogenic strains of Streptococcus mutans and that this binding requires a structural determinant in the N-terminal region. In the present study an expression construct, pNMuc7, encoding the N-terminal 144 amino acids of MUC7 was generated, and the recombinant protein rNMUC7 was expressed in Escherichia coli. Purified rNMUC7 was characterized and the binding of this protein to oral bacteria was investigated in an established assay. The results showed that the recombinant protein bound to S. mutans ATCC 25175 and ATCC 33402, and that alkylation of the two cysteine residues (Cys(45) and Cys(50)) resulted in the complete loss of bacterial binding. This suggests that binding of MUC7 to S. mutans occurs between the N-terminal region of the mucin molecule and the bacterial surface, and that this interaction is dependent on a cysteine-containing domain within this region of MUC7. In addition, the killing activity of rNMUC7 was compared with that of the candidacidal salivary protein histatin 5 in an established Candida albicans (ATCC 44505) blastoconidia killing assay. It was found that the LD(50) values of rNMUC7 and histatin 5 were comparable, and that the recombinant protein displayed significant killing activity at the physiological concentration range of MUC7 in whole saliva. This study is the first to show that the N-terminal region of MUC7 contains a structural determinant for bacterial binding and that this region exhibits candidacidal activity.
Full Text
The Full Text of this article is available as a PDF (196.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albone E. F., Hagen F. K., VanWuyckhuyse B. C., Tabak L. A. Molecular cloning of a rat submandibular gland apomucin. J Biol Chem. 1994 Jun 17;269(24):16845–16852. [PubMed] [Google Scholar]
- Bergey E. J., Cho M. I., Hammarskjöld M. L., Rekosh D., Levine M. J., Blumberg B. M., Epstein L. G. Aggregation of human immunodeficiency virus type 1 by human salivary secretions. Crit Rev Oral Biol Med. 1993;4(3-4):467–474. doi: 10.1177/10454411930040033001. [DOI] [PubMed] [Google Scholar]
- Biesbrock A. R., Reddy M. S., Levine M. J. Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect Immun. 1991 Oct;59(10):3492–3497. doi: 10.1128/iai.59.10.3492-3497.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bobek L. A., Liu J., Sait S. N., Shows T. B., Bobek Y. A., Levine M. J. Structure and chromosomal localization of the human salivary mucin gene, MUC7. Genomics. 1996 Feb 1;31(3):277–282. doi: 10.1006/geno.1996.0049. [DOI] [PubMed] [Google Scholar]
- Bobek L. A., Tsai H., Biesbrock A. R., Levine M. J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem. 1993 Sep 25;268(27):20563–20569. [PubMed] [Google Scholar]
- Buisine M. P., Devisme L., Copin M. C., Durand-Réville M., Gosselin B., Aubert J. P., Porchet N. Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol. 1999 Feb;20(2):209–218. doi: 10.1165/ajrcmb.20.2.3259. [DOI] [PubMed] [Google Scholar]
- Carlén A., Bratt P., Stenudd C., Olsson J., Strömberg N. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. J Dent Res. 1998 Jan;77(1):81–90. doi: 10.1177/00220345980770011301. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Denny P. C., Mirels L., Denny P. A. Mouse submandibular gland salivary apomucin contains repeated N-glycosylation sites. Glycobiology. 1996 Jan;6(1):43–50. doi: 10.1093/glycob/6.1.43. [DOI] [PubMed] [Google Scholar]
- Ebisu S., Fukuhara H., Okada H. Purification and characterization of Eikenella corrodens aggregating factor from submandibular-sublingual saliva. J Periodontal Res. 1988 Sep;23(5):328–333. doi: 10.1111/j.1600-0765.1988.tb01426.x. [DOI] [PubMed] [Google Scholar]
- Edgerton M., Scannapieco F. A., Reddy M. S., Levine M. J. Human submandibular-sublingual saliva promotes adhesion of Candida albicans to polymethylmethacrylate. Infect Immun. 1993 Jun;61(6):2644–2652. doi: 10.1128/iai.61.6.2644-2652.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gendler S. J., Spicer A. P. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–634. doi: 10.1146/annurev.ph.57.030195.003135. [DOI] [PubMed] [Google Scholar]
- Groenink J., Ligtenberg A. J., Veerman E. C., Bolscher J. G., Nieuw Amerongen A. V. Interaction of the salivary low-molecular-weight mucin (MG2) with Actinobacillus actinomycetemcomitans. Antonie Van Leeuwenhoek. 1996 Jul;70(1):79–87. doi: 10.1007/BF00393572. [DOI] [PubMed] [Google Scholar]
- Gururaja T. L., Levine J. H., Tran D. T., Naganagowda G. A., Ramalingam K., Ramasubbu N., Levine M. J. Candidacidal activity prompted by N-terminus histatin-like domain of human salivary mucin (MUC7)1. Biochim Biophys Acta. 1999 Apr 12;1431(1):107–119. doi: 10.1016/s0167-4838(99)00034-5. [DOI] [PubMed] [Google Scholar]
- Gururaja T. L., Ramasubbu N., Venugopalan P., Reddy M. S., Ramalingam K., Levine M. J. Structural features of the human salivary mucin, MUC7. Glycoconj J. 1998 May;15(5):457–467. doi: 10.1023/a:1006978818555. [DOI] [PubMed] [Google Scholar]
- Hoffman M. P., Haidaris C. G. Analysis of Candida albicans adhesion to salivary mucin. Infect Immun. 1993 May;61(5):1940–1949. doi: 10.1128/iai.61.5.1940-1949.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jentoft N., Dearborn D. G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J Biol Chem. 1979 Jun 10;254(11):4359–4365. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levine M. J., Herzberg M. C., Levine M. S., Ellison S. A., Stinson M. W., Li H. C., van Dyke T. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect Immun. 1978 Jan;19(1):107–115. doi: 10.1128/iai.19.1.107-115.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu B., Rayment S., Oppenheim F. G., Troxler R. F. Isolation of human salivary mucin MG2 by a novel method and characterization of its interactions with oral bacteria. Arch Biochem Biophys. 1999 Apr 15;364(2):286–293. doi: 10.1006/abbi.1999.1141. [DOI] [PubMed] [Google Scholar]
- Loomis R. E., Prakobphol A., Levine M. J., Reddy M. S., Jones P. C. Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys. 1987 Nov 1;258(2):452–464. doi: 10.1016/0003-9861(87)90366-3. [DOI] [PubMed] [Google Scholar]
- Mehrotra R., Thornton D. J., Sheehan J. K. Isolation and physical characterization of the MUC7 (MG2) mucin from saliva: evidence for self-association. Biochem J. 1998 Sep 1;334(Pt 2):415–422. doi: 10.1042/bj3340415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray P. A., Prakobphol A., Lee T., Hoover C. I., Fisher S. J. Adherence of oral streptococci to salivary glycoproteins. Infect Immun. 1992 Jan;60(1):31–38. doi: 10.1128/iai.60.1.31-38.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagashunmugam T., Friedman H. M., Davis C., Kennedy S., Goldstein L. T., Malamud D. Human submandibular saliva specifically inhibits HIV type 1. AIDS Res Hum Retroviruses. 1997 Mar 20;13(5):371–376. doi: 10.1089/aid.1997.13.371. [DOI] [PubMed] [Google Scholar]
- Oppenheim F. G., Xu T., McMillian F. M., Levitz S. M., Diamond R. D., Offner G. D., Troxler R. F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem. 1988 Jun 5;263(16):7472–7477. [PubMed] [Google Scholar]
- Pollock J. J., Denepitiya L., MacKay B. J., Iacono V. J. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun. 1984 Jun;44(3):702–707. doi: 10.1128/iai.44.3.702-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy M. S., Bobek L. A., Haraszthy G. G., Biesbrock A. R., Levine M. J. Structural features of the low-molecular-mass human salivary mucin. Biochem J. 1992 Oct 15;287(Pt 2):639–643. doi: 10.1042/bj2870639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy M. S., Levine M. J., Paranchych W. Low-molecular-mass human salivary mucin, MG2: structure and binding of Pseudomonas aeruginosa. Crit Rev Oral Biol Med. 1993;4(3-4):315–323. doi: 10.1177/10454411930040030901. [DOI] [PubMed] [Google Scholar]
- Retz M., Lehmann J., Röder C., Plötz B., Harder J., Eggers J., Pauluschke J., Kalthoff H., Stöckle M. Differential mucin MUC7 gene expression in invasive bladder carcinoma in contrast to uniform MUC1 and MUC2 gene expression in both normal urothelium and bladder carcinoma. Cancer Res. 1998 Dec 15;58(24):5662–5666. [PubMed] [Google Scholar]
- Scannapieco F. A. Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med. 1994;5(3-4):203–248. doi: 10.1177/10454411940050030201. [DOI] [PubMed] [Google Scholar]
- Sharma P., Dudus L., Nielsen P. A., Clausen H., Yankaskas J. R., Hollingsworth M. A., Engelhardt J. F. MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways. Am J Respir Cell Mol Biol. 1998 Jul;19(1):30–37. doi: 10.1165/ajrcmb.19.1.3054. [DOI] [PubMed] [Google Scholar]
- Shomers J. P., Tabak L. A., Levine M. J., Mandel I. D., Hay D. I. Properties of cysteine-containing phosphoproteins from human submandibular-sublingual saliva. J Dent Res. 1982 Feb;61(2):397–399. doi: 10.1177/00220345820610020601. [DOI] [PubMed] [Google Scholar]
- Tabak L. A. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol. 1995;57:547–564. doi: 10.1146/annurev.ph.57.030195.002555. [DOI] [PubMed] [Google Scholar]
- Troxler R. F., Offner G. D., Xu T., Vanderspek J. C., Oppenheim F. G. Structural relationship between human salivary histatins. J Dent Res. 1990 Jan;69(1):2–6. doi: 10.1177/00220345900690010101. [DOI] [PubMed] [Google Scholar]
- Tsai H., Bobek L. A. Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med. 1998;9(4):480–497. doi: 10.1177/10454411980090040601. [DOI] [PubMed] [Google Scholar]
- Xu T., Levitz S. M., Diamond R. D., Oppenheim F. G. Anticandidal activity of major human salivary histatins. Infect Immun. 1991 Aug;59(8):2549–2554. doi: 10.1128/iai.59.8.2549-2554.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]