Abstract
The effects of the short-chain ceramides D-erythro-N-acetylsphingosine (C(2)-ceramide), 6-[N-(7-nitrobenz-2-oxa-1, 3-diazole-4-yl)amino]hexanoyl-D-erythro-sphingosine(NBD-ceramide) and N-[4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl]-D-erythro-sphingosine (DMB-ceramide) on the incorporation of [(14)C]acetate into baby-hamster kidney (BHK) fibroblasts have been examined. C(2)-ceramide at concentrations up to 20 microM caused an inhibition of synthesis of phosphatidylcholine (PtdCho), sphingolipids and cholesterol within 2 h. Similar effects in BHK cells were seen using other radioactive tracers ([(3)H]water, [(3)H]palmitate and [(3)H]choline) and using HL60 cells labelled with [(14)C]acetate. The inhibition of PtdCho synthesis corresponded to an accumulation of label in diacylglycerol and triacylglycerol, probably as a consequence of cytidylyltransferase blockade. With [(3)H]choline label, the decrease in sphingomyelin synthesis could be partly accounted for by accumulation of a slow-moving lipid, likely to be C(2)-sphingomyelin. NBD-ceramide also reduced sphingomyelin and cholesterol biosynthesis, but had much less effect on PtdCho and acylglycerols. In contrast, the only apparent effect of DMB-ceramide was to inhibit synthesis of sphingomyelin, with a reciprocal increase in DMB-sphingomyelin synthesis. However, all of these short-chain ceramides caused massive apoptosis after 18 h, whereas addition of N-acetyldihydrosphingosine or elevation of natural ceramide by treatment of cells with sphingomyelinase had little effect on lipid synthesis or apoptosis. The present findings suggest that the apoptotic effect of short-chain ceramides is sometimes associated with inhibition of cytidylyltransferase, but is more closely correlated with a competitive inhibition of normal sphingomyelin biosynthesis.
Full Text
The Full Text of this article is available as a PDF (166.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe A., Wu D., Shayman J. A., Radin N. S. Metabolic effects of short-chain ceramide and glucosylceramide on sphingolipids and protein kinase C. Eur J Biochem. 1992 Dec 15;210(3):765–773. doi: 10.1111/j.1432-1033.1992.tb17479.x. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Baburina I., Jackowski S. Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1998 Jan 23;273(4):2169–2173. doi: 10.1074/jbc.273.4.2169. [DOI] [PubMed] [Google Scholar]
- Bielawska A., Linardic C. M., Hannun Y. A. Modulation of cell growth and differentiation by ceramide. FEBS Lett. 1992 Jul 28;307(2):211–214. doi: 10.1016/0014-5793(92)80769-d. [DOI] [PubMed] [Google Scholar]
- Boggs K., Rock C. O., Jackowski S. The antiproliferative effect of hexadecylphosphocholine toward HL60 cells is prevented by exogenous lysophosphatidylcholine. Biochim Biophys Acta. 1998 Jan 5;1389(1):1–12. doi: 10.1016/s0005-2760(97)00145-8. [DOI] [PubMed] [Google Scholar]
- Bourteele S., Hausser A., Döppler H., Horn-Müller J., Röpke C., Schwarzmann G., Pfizenmaier K., Müller G. Tumor necrosis factor induces ceramide oscillations and negatively controls sphingolipid synthases by caspases in apoptotic Kym-1 cells. J Biol Chem. 1998 Nov 20;273(47):31245–31251. doi: 10.1074/jbc.273.47.31245. [DOI] [PubMed] [Google Scholar]
- Cui Z., Houweling M., Chen M. H., Record M., Chap H., Vance D. E., Tercé F. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem. 1996 Jun 21;271(25):14668–14671. doi: 10.1074/jbc.271.25.14668. [DOI] [PubMed] [Google Scholar]
- FOSTER D. W., BLOOM B. The synthesis of fatty acids by rat liver slices in tritiated water. J Biol Chem. 1963 Mar;238:888–892. [PubMed] [Google Scholar]
- Gupta A. K., Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase activity and cholesterol biosynthesis in cell cultures. J Lipid Res. 1991 Jan;32(1):125–136. [PubMed] [Google Scholar]
- Haimovitz-Friedman A., Kolesnick R. N., Fuks Z. Ceramide signaling in apoptosis. Br Med Bull. 1997;53(3):539–553. doi: 10.1093/oxfordjournals.bmb.a011629. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73–77. doi: 10.1016/s0968-0004(00)88961-6. [DOI] [PubMed] [Google Scholar]
- Hofmann K., Dixit V. M. Ceramide in apoptosis--does it really matter? Trends Biochem Sci. 1998 Oct;23(10):374–377. doi: 10.1016/s0968-0004(98)01289-4. [DOI] [PubMed] [Google Scholar]
- Koval M., Pagano R. E. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J Cell Biol. 1989 Jun;108(6):2169–2181. doi: 10.1083/jcb.108.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladenson R. C., Monsey J. D., Allin J., Silbert D. F. Utilization of exogenously supplied sphingosine analogues for sphingolipid biosynthesis in Chinese hamster ovary and mouse LM cell fibroblasts. J Biol Chem. 1993 Apr 15;268(11):7650–7659. [PubMed] [Google Scholar]
- Lee T. C., Ou M. C., Shinozaki K., Malone B., Snyder F. Biosynthesis of N-acetylsphingosine by platelet-activating factor: sphingosine CoA-independent transacetylase in HL-60 cels. J Biol Chem. 1996 Jan 5;271(1):209–217. doi: 10.1074/jbc.271.1.209. [DOI] [PubMed] [Google Scholar]
- Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
- Olivera A., Buckley N. E., Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1992 Dec 25;267(36):26121–26127. [PubMed] [Google Scholar]
- Pelech S. L., Vance D. E. Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Jun 25;779(2):217–251. doi: 10.1016/0304-4157(84)90010-8. [DOI] [PubMed] [Google Scholar]
- Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):233–243. doi: 10.1016/s0005-2760(98)00145-3. [DOI] [PubMed] [Google Scholar]
- Ridgway N. D., Merriam D. L. Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells. Biochim Biophys Acta. 1995 Apr 28;1256(1):57–70. doi: 10.1016/0005-2760(95)00010-a. [DOI] [PubMed] [Google Scholar]
- Sillence D. J., Allan D. Evidence against an early signalling role for ceramide in Fas-mediated apoptosis. Biochem J. 1997 May 15;324(Pt 1):29–32. doi: 10.1042/bj3240029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillence D. J., Allan D. Repair of BHK cell surface ganglioside GM3 after its degradation by extracellular sialidase. Mol Membr Biol. 1998 Oct-Dec;15(4):229–235. doi: 10.3109/09687689709044325. [DOI] [PubMed] [Google Scholar]
- Slotte J. P., Bierman E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988 Mar 15;250(3):653–658. doi: 10.1042/bj2500653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veldman R. J., Klappe K., Hoekstra D., Kok J. W. Metabolism and apoptotic properties of elevated ceramide in HT29rev cells. Biochem J. 1998 Apr 15;331(Pt 2):563–569. doi: 10.1042/bj3310563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieder T., Orfanos C. E., Geilen C. C. Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J Biol Chem. 1998 May 1;273(18):11025–11031. doi: 10.1074/jbc.273.18.11025. [DOI] [PubMed] [Google Scholar]
- Wieder T., Perlitz C., Wieprecht M., Huang R. T., Geilen C. C., Orfanos C. E. Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells. Biochem J. 1995 Nov 1;311(Pt 3):873–879. doi: 10.1042/bj3110873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Liu B., Jenkins G. M., Hannun Y. A., Obeid L. M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem. 1997 Apr 11;272(15):9609–9612. doi: 10.1074/jbc.272.15.9609. [DOI] [PubMed] [Google Scholar]