Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):603–610.

Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis.

D Allan 1
PMCID: PMC1220795  PMID: 10642519

Abstract

The effects of the short-chain ceramides D-erythro-N-acetylsphingosine (C(2)-ceramide), 6-[N-(7-nitrobenz-2-oxa-1, 3-diazole-4-yl)amino]hexanoyl-D-erythro-sphingosine(NBD-ceramide) and N-[4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl]-D-erythro-sphingosine (DMB-ceramide) on the incorporation of [(14)C]acetate into baby-hamster kidney (BHK) fibroblasts have been examined. C(2)-ceramide at concentrations up to 20 microM caused an inhibition of synthesis of phosphatidylcholine (PtdCho), sphingolipids and cholesterol within 2 h. Similar effects in BHK cells were seen using other radioactive tracers ([(3)H]water, [(3)H]palmitate and [(3)H]choline) and using HL60 cells labelled with [(14)C]acetate. The inhibition of PtdCho synthesis corresponded to an accumulation of label in diacylglycerol and triacylglycerol, probably as a consequence of cytidylyltransferase blockade. With [(3)H]choline label, the decrease in sphingomyelin synthesis could be partly accounted for by accumulation of a slow-moving lipid, likely to be C(2)-sphingomyelin. NBD-ceramide also reduced sphingomyelin and cholesterol biosynthesis, but had much less effect on PtdCho and acylglycerols. In contrast, the only apparent effect of DMB-ceramide was to inhibit synthesis of sphingomyelin, with a reciprocal increase in DMB-sphingomyelin synthesis. However, all of these short-chain ceramides caused massive apoptosis after 18 h, whereas addition of N-acetyldihydrosphingosine or elevation of natural ceramide by treatment of cells with sphingomyelinase had little effect on lipid synthesis or apoptosis. The present findings suggest that the apoptotic effect of short-chain ceramides is sometimes associated with inhibition of cytidylyltransferase, but is more closely correlated with a competitive inhibition of normal sphingomyelin biosynthesis.

Full Text

The Full Text of this article is available as a PDF (166.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Wu D., Shayman J. A., Radin N. S. Metabolic effects of short-chain ceramide and glucosylceramide on sphingolipids and protein kinase C. Eur J Biochem. 1992 Dec 15;210(3):765–773. doi: 10.1111/j.1432-1033.1992.tb17479.x. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Baburina I., Jackowski S. Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1998 Jan 23;273(4):2169–2173. doi: 10.1074/jbc.273.4.2169. [DOI] [PubMed] [Google Scholar]
  5. Bielawska A., Linardic C. M., Hannun Y. A. Modulation of cell growth and differentiation by ceramide. FEBS Lett. 1992 Jul 28;307(2):211–214. doi: 10.1016/0014-5793(92)80769-d. [DOI] [PubMed] [Google Scholar]
  6. Boggs K., Rock C. O., Jackowski S. The antiproliferative effect of hexadecylphosphocholine toward HL60 cells is prevented by exogenous lysophosphatidylcholine. Biochim Biophys Acta. 1998 Jan 5;1389(1):1–12. doi: 10.1016/s0005-2760(97)00145-8. [DOI] [PubMed] [Google Scholar]
  7. Bourteele S., Hausser A., Döppler H., Horn-Müller J., Röpke C., Schwarzmann G., Pfizenmaier K., Müller G. Tumor necrosis factor induces ceramide oscillations and negatively controls sphingolipid synthases by caspases in apoptotic Kym-1 cells. J Biol Chem. 1998 Nov 20;273(47):31245–31251. doi: 10.1074/jbc.273.47.31245. [DOI] [PubMed] [Google Scholar]
  8. Cui Z., Houweling M., Chen M. H., Record M., Chap H., Vance D. E., Tercé F. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem. 1996 Jun 21;271(25):14668–14671. doi: 10.1074/jbc.271.25.14668. [DOI] [PubMed] [Google Scholar]
  9. FOSTER D. W., BLOOM B. The synthesis of fatty acids by rat liver slices in tritiated water. J Biol Chem. 1963 Mar;238:888–892. [PubMed] [Google Scholar]
  10. Gupta A. K., Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase activity and cholesterol biosynthesis in cell cultures. J Lipid Res. 1991 Jan;32(1):125–136. [PubMed] [Google Scholar]
  11. Haimovitz-Friedman A., Kolesnick R. N., Fuks Z. Ceramide signaling in apoptosis. Br Med Bull. 1997;53(3):539–553. doi: 10.1093/oxfordjournals.bmb.a011629. [DOI] [PubMed] [Google Scholar]
  12. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  13. Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73–77. doi: 10.1016/s0968-0004(00)88961-6. [DOI] [PubMed] [Google Scholar]
  14. Hofmann K., Dixit V. M. Ceramide in apoptosis--does it really matter? Trends Biochem Sci. 1998 Oct;23(10):374–377. doi: 10.1016/s0968-0004(98)01289-4. [DOI] [PubMed] [Google Scholar]
  15. Koval M., Pagano R. E. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J Cell Biol. 1989 Jun;108(6):2169–2181. doi: 10.1083/jcb.108.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ladenson R. C., Monsey J. D., Allin J., Silbert D. F. Utilization of exogenously supplied sphingosine analogues for sphingolipid biosynthesis in Chinese hamster ovary and mouse LM cell fibroblasts. J Biol Chem. 1993 Apr 15;268(11):7650–7659. [PubMed] [Google Scholar]
  17. Lee T. C., Ou M. C., Shinozaki K., Malone B., Snyder F. Biosynthesis of N-acetylsphingosine by platelet-activating factor: sphingosine CoA-independent transacetylase in HL-60 cels. J Biol Chem. 1996 Jan 5;271(1):209–217. doi: 10.1074/jbc.271.1.209. [DOI] [PubMed] [Google Scholar]
  18. Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
  20. Olivera A., Buckley N. E., Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1992 Dec 25;267(36):26121–26127. [PubMed] [Google Scholar]
  21. Pelech S. L., Vance D. E. Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Jun 25;779(2):217–251. doi: 10.1016/0304-4157(84)90010-8. [DOI] [PubMed] [Google Scholar]
  22. Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):233–243. doi: 10.1016/s0005-2760(98)00145-3. [DOI] [PubMed] [Google Scholar]
  23. Ridgway N. D., Merriam D. L. Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells. Biochim Biophys Acta. 1995 Apr 28;1256(1):57–70. doi: 10.1016/0005-2760(95)00010-a. [DOI] [PubMed] [Google Scholar]
  24. Sillence D. J., Allan D. Evidence against an early signalling role for ceramide in Fas-mediated apoptosis. Biochem J. 1997 May 15;324(Pt 1):29–32. doi: 10.1042/bj3240029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sillence D. J., Allan D. Repair of BHK cell surface ganglioside GM3 after its degradation by extracellular sialidase. Mol Membr Biol. 1998 Oct-Dec;15(4):229–235. doi: 10.3109/09687689709044325. [DOI] [PubMed] [Google Scholar]
  26. Slotte J. P., Bierman E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988 Mar 15;250(3):653–658. doi: 10.1042/bj2500653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Veldman R. J., Klappe K., Hoekstra D., Kok J. W. Metabolism and apoptotic properties of elevated ceramide in HT29rev cells. Biochem J. 1998 Apr 15;331(Pt 2):563–569. doi: 10.1042/bj3310563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wieder T., Orfanos C. E., Geilen C. C. Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J Biol Chem. 1998 May 1;273(18):11025–11031. doi: 10.1074/jbc.273.18.11025. [DOI] [PubMed] [Google Scholar]
  29. Wieder T., Perlitz C., Wieprecht M., Huang R. T., Geilen C. C., Orfanos C. E. Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells. Biochem J. 1995 Nov 1;311(Pt 3):873–879. doi: 10.1042/bj3110873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang P., Liu B., Jenkins G. M., Hannun Y. A., Obeid L. M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem. 1997 Apr 11;272(15):9609–9612. doi: 10.1074/jbc.272.15.9609. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES