Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):681–685.

Cellular adaptation to down-regulated iron transport into lymphoid leukaemic cells: effects on the expression of the gene for ribonucleotide reductase.

C R Chitambar 1, J P Wereley 1, T Heiman 1, W E Antholine 1, W J O'brien 1
PMCID: PMC1220804  PMID: 10642528

Abstract

Ribonucleotide reductase is an iron-containing enzyme that is essential for DNA synthesis. Whereas previous studies have used various iron chelators to examine the relationship between cellular iron metabolism and ribonucleotide reductase activity in cells, they have not elucidated the relationship between iron transport into cells and the expression of the gene for ribonucleotide reductase. To investigate this, we examined ribonucleotide reductase mRNA, protein and enzyme activity in a novel line of CCRF-CEM cells (DFe-T cells) that display an approx. 60% decrease in their uptake of iron compared with the parental wild-type cell line. We found that DFe-T cells displayed an approx. 40% decrease in ribonucleotide reductase specific enzyme activity relative to wild-type cells without a change in their proliferation. Kinetic analysis of CDP reductase activity revealed an approx. 60% decrease in V(max) in DFe-T cells without a change in K(m). Despite the decrease in enzyme activity, the mRNA and protein for the R1 and R2 subunits of ribonucleotide reductase in DFe-T cells were similar to those of wild-type cells. ESR spectroscopy studies revealed that DFe-T cells had a 22% decrease in the tyrosyl free radical of the R2 subunit, suggesting that a larger amount of R2 protein was present as functionally inactive apo-R2 in these cells. Our studies indicate that ribonucleotide reductase activity in CCRF-CEM cells can be down-regulated by more than 50% in response to down-regulated iron transport without an adverse effect on cell proliferation. Furthermore, our studies suggest a regulatory link between ribonucleotide reductase activity and iron transport into these cells.

Full Text

The Full Text of this article is available as a PDF (124.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatt J., Stitely S. Antineuroblastoma activity of desferoxamine in human cell lines. Cancer Res. 1987 Apr 1;47(7):1749–1750. [PubMed] [Google Scholar]
  2. Brissenden J. E., Caras I., Thelander L., Francke U. The structural gene for the M1 subunit of ribonucleotide reductase maps to chromosome 11, band p15, in human and to chromosome 7 in mouse. Exp Cell Res. 1988 Jan;174(1):302–308. doi: 10.1016/0014-4827(88)90165-6. [DOI] [PubMed] [Google Scholar]
  3. Brodie C., Siriwardana G., Lucas J., Schleicher R., Terada N., Szepesi A., Gelfand E., Seligman P. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in G1 phase of the cell cycle. Cancer Res. 1993 Sep 1;53(17):3968–3975. [PubMed] [Google Scholar]
  4. Chitambar C. R., Matthaeus W. G., Antholine W. E., Graff K., O'Brien W. J. Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood. 1988 Dec;72(6):1930–1936. [PubMed] [Google Scholar]
  5. Chitambar C. R., Sax D. Regulatory effects of gallium on transferrin-independent iron uptake by human leukemic HL60 cells. Blood. 1992 Jul 15;80(2):505–511. [PubMed] [Google Scholar]
  6. Chitambar C. R., Wereley J. P. Effect of hydroxyurea on cellular iron metabolism in human leukemic CCRF-CEM cells: changes in iron uptake and the regulation of transferrin receptor and ferritin gene expression following inhibition of DNA synthesis. Cancer Res. 1995 Oct 1;55(19):4361–4366. [PubMed] [Google Scholar]
  7. Chitambar C. R., Wereley J. P. Resistance to the antitumor agent gallium nitrate in human leukemic cells is associated with decreased gallium/iron uptake, increased activity of iron regulatory protein-1, and decreased ferritin production. J Biol Chem. 1997 May 2;272(18):12151–12157. doi: 10.1074/jbc.272.18.12151. [DOI] [PubMed] [Google Scholar]
  8. Chitambar C. R., Wereley J. P. Transferrin receptor-dependent and -independent iron transport in gallium-resistant human lymphoid leukemic cells. Blood. 1998 Jun 15;91(12):4686–4693. [PubMed] [Google Scholar]
  9. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  10. Cooper C. E., Lynagh G. R., Hoyes K. P., Hider R. C., Cammack R., Porter J. B. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem. 1996 Aug 23;271(34):20291–20299. doi: 10.1074/jbc.271.34.20291. [DOI] [PubMed] [Google Scholar]
  11. Cory J. G., Russell F. A., Mansell M. M. A convenient assay for ADP reductase activity using Dowex-1-borate columns. Anal Biochem. 1973 Oct;55(2):449–456. doi: 10.1016/0003-2697(73)90135-8. [DOI] [PubMed] [Google Scholar]
  12. Engström Y., Eriksson S., Jildevik I., Skog S., Thelander L., Tribukait B. Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem. 1985 Aug 5;260(16):9114–9116. [PubMed] [Google Scholar]
  13. Eriksson S., Gräslund A., Skog S., Thelander L., Tribukait B. Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis. J Biol Chem. 1984 Oct 10;259(19):11695–11700. [PubMed] [Google Scholar]
  14. Gräslund A., Ehrenberg A., Thelander L. Characterization of the free radical of mammalian ribonucleotide reductase. J Biol Chem. 1982 May 25;257(10):5711–5715. [PubMed] [Google Scholar]
  15. Gräslund A., Sahlin M., Sjöberg B. M. The tyrosyl free radical in ribonucleotide reductase. Environ Health Perspect. 1985 Dec;64:139–149. doi: 10.1289/ehp.64-1568609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffbrand A. V., Ganeshaguru K., Hooton J. W., Tattersall M. H. Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br J Haematol. 1976 Aug;33(4):517–526. doi: 10.1111/j.1365-2141.1976.tb03570.x. [DOI] [PubMed] [Google Scholar]
  17. Hoyes K. P., Hider R. C., Porter J. B. Cell cycle synchronization and growth inhibition by 3-hydroxypyridin-4-one iron chelators in leukemia cell lines. Cancer Res. 1992 Sep 1;52(17):4591–4599. [PubMed] [Google Scholar]
  18. Jordan A., Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 1998;67:71–98. doi: 10.1146/annurev.biochem.67.1.71. [DOI] [PubMed] [Google Scholar]
  19. Kemp J. D. Iron deprivation and cancer: a view beginning with studies of monoclonal antibodies against the transferrin receptor. Histol Histopathol. 1997 Jan;12(1):291–296. [PubMed] [Google Scholar]
  20. Kemp J. D., Smith K. M., Kanner L. J., Gomez F., Thorson J. A., Naumann P. W. Synergistic inhibition of lymphoid tumor growth in vitro by combined treatment with the iron chelator deferoxamine and an immunoglobulin G monoclonal antibody against the transferrin receptor. Blood. 1990 Sep 1;76(5):991–995. [PubMed] [Google Scholar]
  21. Kovar J., Naumann P. W., Stewart B. C., Kemp J. D. Differing sensitivity of non-hematopoietic human tumors to synergistic anti-transferrin receptor monoclonal antibodies and deferoxamine in vitro. Pathobiology. 1995;63(2):65–70. doi: 10.1159/000163935. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lederman H. M., Cohen A., Lee J. W., Freedman M. H., Gelfand E. W. Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Blood. 1984 Sep;64(3):748–753. [PubMed] [Google Scholar]
  24. Lucas J. J., Szepesi A., Domenico J., Takase K., Tordai A., Terada N., Gelfand E. W. Effects of iron-depletion on cell cycle progression in normal human T lymphocytes: selective inhibition of the appearance of the cyclin A-associated component of the p33cdk2 kinase. Blood. 1995 Sep 15;86(6):2268–2280. [PubMed] [Google Scholar]
  25. Mann G. J., Musgrove E. A., Fox R. M., Thelander L. Ribonucleotide reductase M1 subunit in cellular proliferation, quiescence, and differentiation. Cancer Res. 1988 Sep 15;48(18):5151–5156. [PubMed] [Google Scholar]
  26. Nyholm S., Mann G. J., Johansson A. G., Bergeron R. J., Gräslund A., Thelander L. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J Biol Chem. 1993 Dec 15;268(35):26200–26205. [PubMed] [Google Scholar]
  27. Ochiai E., Mann G. J., Gräslund A., Thelander L. Tyrosyl free radical formation in the small subunit of mouse ribonucleotide reductase. J Biol Chem. 1990 Sep 15;265(26):15758–15761. [PubMed] [Google Scholar]
  28. Reichard P. From RNA to DNA, why so many ribonucleotide reductases? Science. 1993 Jun 18;260(5115):1773–1777. doi: 10.1126/science.8511586. [DOI] [PubMed] [Google Scholar]
  29. Richardson D. R., Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997 Mar 14;1331(1):1–40. doi: 10.1016/s0304-4157(96)00014-7. [DOI] [PubMed] [Google Scholar]
  30. Richardson D. R., Tran E. H., Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood. 1995 Dec 1;86(11):4295–4306. [PubMed] [Google Scholar]
  31. Sauvage C. A., Mendelsohn J. C., Lesley J. F., Trowbridge I. S. Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia. Cancer Res. 1987 Feb 1;47(3):747–753. [PubMed] [Google Scholar]
  32. Steeper J. R., Steuart C. D. A rapid assay for CDP reductase activity in mammalian cell extracts. Anal Biochem. 1970 Mar;34:123–130. doi: 10.1016/0003-2697(70)90092-8. [DOI] [PubMed] [Google Scholar]
  33. Taetle R., Honeysett J. M., Bergeron R. Combination iron depletion therapy. J Natl Cancer Inst. 1989 Aug 16;81(16):1229–1235. doi: 10.1093/jnci/81.16.1229. [DOI] [PubMed] [Google Scholar]
  34. Taetle R., Honeysett J. M., Trowbridge I. Effects of anti-transferrin receptor antibodies on growth of normal and malignant myeloid cells. Int J Cancer. 1983 Sep 15;32(3):343–349. doi: 10.1002/ijc.2910320314. [DOI] [PubMed] [Google Scholar]
  35. Thelander L., Reichard P. Reduction of ribonucleotides. Annu Rev Biochem. 1979;48:133–158. doi: 10.1146/annurev.bi.48.070179.001025. [DOI] [PubMed] [Google Scholar]
  36. Thompson D. P., Carter G. L., Cory J. G. Changes in messenger RNA levels for the subunits of ribonucleotide reductase during the cell cycle of leukemia L1210 cells. Cancer Commun. 1989;1(4):253–260. [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang-Feng T. L., Barton D. E., Thelander L., Lewis W. H., Srinivasan P. R., Francke U. Ribonucleotide reductase M2 subunit sequences mapped to four different chromosomal sites in humans and mice: functional locus identified by its amplification in hydroxyurea-resistant cell lines. Genomics. 1987 Sep;1(1):77–86. doi: 10.1016/0888-7543(87)90108-x. [DOI] [PubMed] [Google Scholar]
  39. Yen Y., Grill S. P., Dutschman G. E., Chang C. N., Zhou B. S., Cheng Y. C. Characterization of a hydroxyurea-resistant human KB cell line with supersensitivity to 6-thioguanine. Cancer Res. 1994 Jul 15;54(14):3686–3691. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES