Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):687–692.

Mechanistic studies of morphine dehydrogenase and stabilization against covalent inactivation.

E H Walker 1, C E French 1, D A Rathbone 1, N C Bruce 1
PMCID: PMC1220805  PMID: 10642529

Abstract

Morphine dehydrogenase (MDH) of Pseudomonas putida M10 catalyses the NADP(+)-dependent oxidation of morphine and codeine to morphinone and codeinone. This enzyme forms the basis of a sensitive detection and assay method for heroin metabolites and a biotransformation process for production of hydromorphone and hydrocodone. To improve these processes we have undertaken a thorough examination of the kinetic mechanism of MDH. Sequence comparisons indicated that MDH belongs within the aldose reductase enzyme family. MDH was shown to be specific for the pro-R hydrogen of NADPH. In steady-state kinetic studies, product inhibition patterns suggested that MDH follows a Theorell-Chance mechanism for codeinone reduction at pH 7, and a non-Theorell-Chance sequential ordered mechanism for codeine oxidation at pH 9.5. Residues corresponding to the catalytically important Tyr-48, Lys-77 and Asp-43 of aldose reductase were modified by site-directed mutagenesis, resulting in substantial loss of activity consistent with a catalytic role for these residues. Loss of activity of MDH in the presence of the reaction product morphinone was found to be due to the formation of a covalent adduct with Cys-80; alteration of Cys-80 to serine resulted in an enzyme with greatly enhanced stability.

Full Text

The Full Text of this article is available as a PDF (145.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold L. J., Jr, You K., Allison W. S., Kaplan N. O. Determination of the hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked oxidoreductases by proton magnetic resonance. Biochemistry. 1976 Nov 2;15(22):4844–4849. doi: 10.1021/bi00667a014. [DOI] [PubMed] [Google Scholar]
  2. Askonas L. J., Ricigliano J. W., Penning T. M. The kinetic mechanism catalysed by homogeneous rat liver 3 alpha-hydroxysteroid dehydrogenase. Evidence for binary and ternary dead-end complexes containing non-steroidal anti-inflammatory drugs. Biochem J. 1991 Sep 15;278(Pt 3):835–841. doi: 10.1042/bj2780835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhatnagar A., Das B., Gavva S. R., Cook P. F., Srivastava S. K. The kinetic mechanism of human placental aldose reductase and aldehyde reductase II. Arch Biochem Biophys. 1988 Mar;261(2):264–274. doi: 10.1016/0003-9861(88)90341-4. [DOI] [PubMed] [Google Scholar]
  4. Birdsall B., King R. W., Wheeler M. R., Lewis C. A., Jr, Goode S. R., Dunlap R. B., Roberts G. C. Correction for light absorption in fluorescence studies of protein-ligand interactions. Anal Biochem. 1983 Jul 15;132(2):353–361. doi: 10.1016/0003-2697(83)90020-9. [DOI] [PubMed] [Google Scholar]
  5. Björkhem I., Danielsson H. Stereochemistry of hydrogen transfer from pyridine nucleotides catalyzed by delta-4-3-oxosteroid 5-beta-reductase and 3-alpha-hydroxysteroid dehydrogenase from rat liver. Eur J Biochem. 1970 Jan;12(1):80–84. doi: 10.1111/j.1432-1033.1970.tb00823.x. [DOI] [PubMed] [Google Scholar]
  6. Bohren K. M., Grimshaw C. E., Lai C. J., Harrison D. H., Ringe D., Petsko G. A., Gabbay K. H. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry. 1994 Mar 1;33(8):2021–2032. doi: 10.1021/bi00174a007. [DOI] [PubMed] [Google Scholar]
  7. Bohren K. M., Page J. L., Shankar R., Henry S. P., Gabbay K. H. Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J Biol Chem. 1991 Dec 15;266(35):24031–24037. [PubMed] [Google Scholar]
  8. Borhani D. W., Harter T. M., Petrash J. M. The crystal structure of the aldose reductase.NADPH binary complex. J Biol Chem. 1992 Dec 5;267(34):24841–24847. doi: 10.2210/pdb1abn/pdb. [DOI] [PubMed] [Google Scholar]
  9. Bruce N. C., Caswell D. A., French C. E., Hailes A. M., Long M. T., Willey D. L. Towards engineering pathways for the synthesis of analgesics and antitussives. Ann N Y Acad Sci. 1994 May 2;721:85–99. doi: 10.1111/j.1749-6632.1994.tb47380.x. [DOI] [PubMed] [Google Scholar]
  10. Bruce N. C., Willey D. L., Coulson A. F., Jeffery J. Bacterial morphine dehydrogenase further defines a distinct superfamily of oxidoreductases with diverse functional activities. Biochem J. 1994 May 1;299(Pt 3):805–811. doi: 10.1042/bj2990805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bruce N. C., Wilmot C. J., Jordan K. N., Stephens L. D., Lowe C. R. Microbial degradation of the morphine alkaloids. Purification and characterization of morphine dehydrogenase from Pseudomonas putida M10. Biochem J. 1991 Mar 15;274(Pt 3):875–880. doi: 10.1042/bj2740875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bruce N. C., Wilmot C. J., Jordan K. N., Trebilcock A. E., Gray Stephens L. D., Lowe C. R. Microbial degradation of the morphine alkaloids: identification of morphine as an intermediate in the metabolism of morphine by Pseudomonas putida M10. Arch Microbiol. 1990;154(5):465–470. doi: 10.1007/BF00245229. [DOI] [PubMed] [Google Scholar]
  13. Feldman H. B., Szczepanik P. A., Havre P., Corrall R. J., Yu L. C., Rodman H. M., Rosner B. A., Klein P. D., Landau B. R. Stereospecificity of the hydrogen transfer catalyzed by human placental aldose reductase. Biochim Biophys Acta. 1977 Jan 11;480(1):14–20. doi: 10.1016/0005-2744(77)90316-3. [DOI] [PubMed] [Google Scholar]
  14. French C. E., Bruce N. C. Bacterial morphinone reductase is related to Old Yellow Enzyme. Biochem J. 1995 Dec 15;312(Pt 3):671–678. doi: 10.1042/bj3120671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. French C. E., Bruce N. C. Purification and characterization of morphinone reductase from Pseudomonas putida M10. Biochem J. 1994 Jul 1;301(Pt 1):97–103. doi: 10.1042/bj3010097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. French C. E., Hailes A. M., Rathbone D. A., Long M. T., Willey D. L., Bruce N. C. Biological production of semisynthetic opiates using genetically engineered bacteria. Biotechnology (N Y) 1995 Jul;13(7):674–676. doi: 10.1038/nbt0795-674. [DOI] [PubMed] [Google Scholar]
  17. Grimshaw C. E., Shahbaz M., Putney C. G. Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase. Biochemistry. 1990 Oct 23;29(42):9947–9955. doi: 10.1021/bi00494a027. [DOI] [PubMed] [Google Scholar]
  18. Hailes A. M., Bruce N. C. Biological synthesis of the analgesic hydromorphone, an intermediate in the metabolism of morphine, by Pseudomonas putida M10. Appl Environ Microbiol. 1993 Jul;59(7):2166–2170. doi: 10.1128/aem.59.7.2166-2170.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holt P. J., Bruce N. C., Lowe C. R. Bioluminescent assay for heroin and its metabolites. Anal Chem. 1996 Jun 1;68(11):1877–1882. doi: 10.1021/ac951207r. [DOI] [PubMed] [Google Scholar]
  20. Holt P. J., Stephens L. D., Bruce N. C., Lowe C. R. An amperometric opiate assay. Biosens Bioelectron. 1995 Summer;10(6-7):517–526. doi: 10.1016/0956-5663(95)96927-q. [DOI] [PubMed] [Google Scholar]
  21. Kubiseski T. J., Hyndman D. J., Morjana N. A., Flynn T. G. Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding. J Biol Chem. 1992 Apr 5;267(10):6510–6517. [PubMed] [Google Scholar]
  22. Kumagai Y., Todaka T., Toki S. A new metabolic pathway of morphine: in vivo and in vitro formation of morphinone and morphine-glutathione adduct in guinea pig. J Pharmacol Exp Ther. 1990 Nov;255(2):504–510. [PubMed] [Google Scholar]
  23. Nagamatsu K., Kido Y., Terao T., Ishida T., Toki S. Protective effect of sulfhydryl compounds on acute toxicity of morphinone. Life Sci. 1982 Mar 29;30(13):1121–1127. doi: 10.1016/0024-3205(82)90533-1. [DOI] [PubMed] [Google Scholar]
  24. Orr G. A., Blanchard J. S. High-performance ion-exchange separation of oxidized and reduced nicotinamide adenine dinucleotides. Anal Biochem. 1984 Oct;142(1):232–234. doi: 10.1016/0003-2697(84)90544-x. [DOI] [PubMed] [Google Scholar]
  25. Ricigliano J. W., Penning T. M. Evidence that enzyme-generated aromatic Michael acceptors covalently modify the nucleotide-binding site of 3 alpha-hydroxysteroid dehydrogenase. Biochem J. 1990 Aug 1;269(3):749–755. doi: 10.1042/bj2690749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tarle I., Borhani D. W., Wilson D. K., Quiocho F. A., Petrash J. M. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem. 1993 Dec 5;268(34):25687–25693. [PubMed] [Google Scholar]
  27. Willey D. L., Caswell D. A., Lowe C. R., Bruce N. C. Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid-encoded gene from Pseudomonas putida M10. Biochem J. 1993 Mar 1;290(Pt 2):539–544. doi: 10.1042/bj2900539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson D. K., Bohren K. M., Gabbay K. H., Quiocho F. A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science. 1992 Jul 3;257(5066):81–84. doi: 10.1126/science.1621098. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES