Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):711–717.

A possible origin of differences between calorimetric and equilibrium estimates of stability parameters of proteins.

A Sinha 1, S Yadav 1, R Ahmad 1, F Ahmad 1
PMCID: PMC1220808  PMID: 10642532

Abstract

To test the validity of thermodynamic parameters from the equilibrium method, we have studied the reversible heat-induced denaturations of lysozyme, ribonuclease A, cytochrome c and myoglobin at various pH values, using absorption spectral measurements. For each protein, if a linear temperature-dependence of the pre- and post-transition baselines is assumed for the analysis of the conformational-transition curve, the estimate of DeltaH (the enthalpy change on denaturation at T(m), the midpoint of denaturation) is significantly less than DeltaH, the value obtained by the calorimetric measurements. If the analysis of thermal-denaturation curves assumes that the temperature-dependence of pre- and post-transition baselines is described by a parabolic function, there exists an excellent agreement between DeltaH(m) values of all proteins obtained from equilibrium and calorimetric methods. The latter analysis is supported by the studies on model compounds, for measurements of absorption properties of tyrosine, tryptophan and haem as a function of temperature suggested that the temperature-dependencies of the optical properties are indeed non-linear. We have observed that for each protein the constant-pressure heat-capacity change on denaturation (DeltaC(p)) determined from the plots of DeltaH versus T(m) is not only independent of the method of analysis of the transition curve, but it is also in excellent agreement with calorimetric DeltaC(p). An important conclusion of this study is that for these proteins that exhibit two-state character, all stability parameters are measured with the same error as that observed with a calorimeter.

Full Text

The Full Text of this article is available as a PDF (189.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F., Contaxis C. C., Bigelow C. C. Free energy changes in lysozyme denaturation. J Biol Chem. 1983 Jul 10;258(13):7960–7963. [PubMed] [Google Scholar]
  2. Ahmad F., McPhie P. Thermodynamics of the denaturation of pepsinogen by urea. Biochemistry. 1978 Jan 24;17(2):241–246. doi: 10.1021/bi00595a008. [DOI] [PubMed] [Google Scholar]
  3. Ahmad F., Taneja S., Yadav S., Haque S. E. A new method for testing the functional dependence of unfolding free energy changes on denaturant concentration. J Biochem. 1994 Feb;115(2):322–327. doi: 10.1093/oxfordjournals.jbchem.a124336. [DOI] [PubMed] [Google Scholar]
  4. Ahmad F., Yadav S., Taneja S. Determining stability of proteins from guanidinium chloride transition curves. Biochem J. 1992 Oct 15;287(Pt 2):481–485. doi: 10.1042/bj2870481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen D. L., Pielak G. J. Baseline length and automated fitting of denaturation data. Protein Sci. 1998 May;7(5):1262–1263. doi: 10.1002/pro.5560070524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ananthanarayanan V. S., Bigelow C. C. Unusual difference spectra of proteins containing tryptophan. I. Studies with model compounds. Biochemistry. 1969 Sep;8(9):3717–3723. doi: 10.1021/bi00837a034. [DOI] [PubMed] [Google Scholar]
  7. Anathanarayanan V. S., Ahmad F., Bigelow C. C. The denaturation of beta-lactoglobulin-A at pH 2. Biochim Biophys Acta. 1977 May 27;492(1):194–203. doi: 10.1016/0005-2795(77)90226-4. [DOI] [PubMed] [Google Scholar]
  8. Aune K. C., Salahuddin A., Zarlengo M. H., Tanford C. Evidence for residual structure in acid- and heat-denatured proteins. J Biol Chem. 1967 Oct 10;242(19):4486–4489. [PubMed] [Google Scholar]
  9. BIGELOW C. C. THE DENATURED STATES OF RIBONUCLEASE. J Mol Biol. 1964 May;8:696–701. doi: 10.1016/s0022-2836(64)80118-2. [DOI] [PubMed] [Google Scholar]
  10. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  11. Bismuto E., Colonna G., Irace G. Unfolding pathway of myoglobin. Evidence for a multistate process. Biochemistry. 1983 Aug 30;22(18):4165–4170. doi: 10.1021/bi00287a001. [DOI] [PubMed] [Google Scholar]
  12. Brandts J. F., Hunt L. The thermodynamics of protein denaturation. 3. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures. J Am Chem Soc. 1967 Sep 13;89(19):4826–4838. doi: 10.1021/ja00995a002. [DOI] [PubMed] [Google Scholar]
  13. Drew H. R., Dickerson R. E. The unfolding of the cytochromes c in methanol and acid. J Biol Chem. 1978 Dec 10;253(23):8420–8427. [PubMed] [Google Scholar]
  14. Franks F. Protein destabilization at low temperatures. Adv Protein Chem. 1995;46:105–139. doi: 10.1016/s0065-3233(08)60333-2. [DOI] [PubMed] [Google Scholar]
  15. Griko Y. V., Privalov P. L. Calorimetric study of the heat and cold denaturation of beta-lactoglobulin. Biochemistry. 1992 Sep 22;31(37):8810–8815. doi: 10.1021/bi00152a017. [DOI] [PubMed] [Google Scholar]
  16. Gupta R., Ahmad F. Protein stability: functional dependence of denaturational Gibbs energy on urea concentration. Biochemistry. 1999 Feb 23;38(8):2471–2479. doi: 10.1021/bi982078m. [DOI] [PubMed] [Google Scholar]
  17. Gupta R., Yadav S., Ahmad F. Protein stability: urea-induced versus guanidine-induced unfolding of metmyoglobin. Biochemistry. 1996 Sep 10;35(36):11925–11930. doi: 10.1021/bi961079g. [DOI] [PubMed] [Google Scholar]
  18. HAMAGUCHI K., KURONO A. STRUCTURE OF MURAMIDASE (LYSOZYME). I. THE EFFECT OF GUANIDINE HYDROCHLORIDE ON MURAMIDASE. J Biochem. 1963 Aug;54:111–122. [PubMed] [Google Scholar]
  19. Hagihara Y., Tan Y., Goto Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride. J Mol Biol. 1994 Apr 1;237(3):336–348. doi: 10.1006/jmbi.1994.1234. [DOI] [PubMed] [Google Scholar]
  20. Ibarra-Molero B., Sanchez-Ruiz J. M. A model-independent, nonlinear extrapolation procedure for the characterization of protein folding energetics from solvent-denaturation data. Biochemistry. 1996 Nov 26;35(47):14689–14702. doi: 10.1021/bi961836a. [DOI] [PubMed] [Google Scholar]
  21. Kelly L., Holladay L. A. A comparative study of the unfolding thermodynamics of vertebrate metmyoglobins. Biochemistry. 1990 May 29;29(21):5062–5069. doi: 10.1021/bi00473a010. [DOI] [PubMed] [Google Scholar]
  22. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  24. Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
  25. Nojima H., Ikai A., Oshima T., Noda H. Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change. J Mol Biol. 1977 Nov 5;116(3):429–442. doi: 10.1016/0022-2836(77)90078-x. [DOI] [PubMed] [Google Scholar]
  26. Ogasahara K., Yutani K., Suzuki M., Sugino Y. Thermal denaturation of tryptophan synthase alpha-subunit. Comparison of the values of thermodynamic parameters of unfolding obtained from van't Hoff analysis of CD measurement with those from calorimetry. Int J Pept Protein Res. 1984 Aug;24(2):147–154. [PubMed] [Google Scholar]
  27. Pace C. N. Conformational stability of globular proteins. Trends Biochem Sci. 1990 Jan;15(1):14–17. doi: 10.1016/0968-0004(90)90124-t. [DOI] [PubMed] [Google Scholar]
  28. Pace C. N., Laurents D. V. A new method for determining the heat capacity change for protein folding. Biochemistry. 1989 Mar 21;28(6):2520–2525. doi: 10.1021/bi00432a026. [DOI] [PubMed] [Google Scholar]
  29. Pace C. N., Laurents D. V., Thomson J. A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry. 1990 Mar 13;29(10):2564–2572. doi: 10.1021/bi00462a019. [DOI] [PubMed] [Google Scholar]
  30. Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
  31. Pace N. C., Tanford C. Thermodynamics of the unfolding of beta-lactoglobulin A in aqueous urea solutions between 5 and 55 degrees. Biochemistry. 1968 Jan;7(1):198–208. doi: 10.1021/bi00841a025. [DOI] [PubMed] [Google Scholar]
  32. Privalov P. L. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25(4):281–305. doi: 10.3109/10409239009090612. [DOI] [PubMed] [Google Scholar]
  33. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  34. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  35. Privalov P. L., Tiktopulo E. I., Venyaminov SYu, Griko YuV, Makhatadze G. I., Khechinashvili N. N. Heat capacity and conformation of proteins in the denatured state. J Mol Biol. 1989 Feb 20;205(4):737–750. doi: 10.1016/0022-2836(89)90318-5. [DOI] [PubMed] [Google Scholar]
  36. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  37. Puett D. The equilibrium unfolding parameters of horse and sperm whale myoglobin. Effects of guanidine hydrochloride, urea, and acid. J Biol Chem. 1973 Jul 10;248(13):4623–4634. [PubMed] [Google Scholar]
  38. SOPHIANOPOULOS A. J., WEISS B. J. THERMODYNAMICS OF CONFORMATIONAL CHANGES OF PROTEINS. I. PH-DEPENDENT DENATURATION OF MURAMIDASE. Biochemistry. 1964 Dec;3:1920–1928. doi: 10.1021/bi00900a023. [DOI] [PubMed] [Google Scholar]
  39. Santoro M. M., Bolen D. W. A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry. 1992 May 26;31(20):4901–4907. doi: 10.1021/bi00135a022. [DOI] [PubMed] [Google Scholar]
  40. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  41. Shiao D. F., Lumry R., Fahey J. Studies of the chymotrypsinogen family of proteins. XI. Heat-capacity changes accompanying reversible thermal unfolding of proteins. J Am Chem Soc. 1971 Apr 21;93(8):2024–2035. doi: 10.1021/ja00737a030. [DOI] [PubMed] [Google Scholar]
  42. Swint L., Robertson A. D. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation. Protein Sci. 1993 Dec;2(12):2037–2049. doi: 10.1002/pro.5560021205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Taneja S., Ahmad F. Increased thermal stability of proteins in the presence of amino acids. Biochem J. 1994 Oct 1;303(Pt 1):147–153. doi: 10.1042/bj3030147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  45. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES