Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):733–740.

Direct and reversed amino acid sequence pattern analysis: structural reasons for activity of reversed sequence sites and results of kinase site mutagenesis.

I Torshin 1
PMCID: PMC1220811  PMID: 10642535

Abstract

During studies of kinase phosphorylation, not all functional kinase phosphorylation may be found using consensus sequence patterns. This type of phosphorylation is termed 'non-consensus' or 'cryptic' phosphorylation. Results presented here based on molecular dynamics of short peptides show that protein kinases may phosphorylate not only established consensus sequences (reading a sequence from N-terminus to C-terminus) but also reversed consensus sequences (reading from C- to N-terminus). Several protein sequences were analysed and corresponding biochemical data were presented. Similarity of molecular shapes of direct and reversed consensus peptides, and sequence conservation in the regions of reversed sites in the analysed proteins, indicate that at least part of the phosphorylation sites considered as 'cryptic' may be explained in terms of reversed consensus pattern occurrences.

Full Text

The Full Text of this article is available as a PDF (242.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arriza J. L., Fairman W. A., Wadiche J. I., Murdoch G. H., Kavanaugh M. P., Amara S. G. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994 Sep;14(9):5559–5569. doi: 10.1523/JNEUROSCI.14-09-05559.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A., Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 1999 Jan 1;27(1):49–54. doi: 10.1093/nar/27.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bravi G., Legname G., Chan A. W. Substrate recognition by ribosome-inactivating protein studied by molecular modeling and molecular electrostatic potentials. J Mol Graph. 1995 Apr;13(2):83-8, 109. doi: 10.1016/0263-7855(94)00014-j. [DOI] [PubMed] [Google Scholar]
  5. Brooks C. L., 3rd, Karplus M. Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J Mol Biol. 1989 Jul 5;208(1):159–181. doi: 10.1016/0022-2836(89)90093-4. [DOI] [PubMed] [Google Scholar]
  6. Bíró J. Comparative analysis of specificity in protein-protein interactions. Part III.: Models of the gene expression based on the sequential complementary coding of some pituitary proteins. Med Hypotheses. 1981 Aug;7(8):995–1007. doi: 10.1016/0306-9877(81)90095-5. [DOI] [PubMed] [Google Scholar]
  7. Caves L. S., Evanseck J. D., Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci. 1998 Mar;7(3):649–666. doi: 10.1002/pro.5560070314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang D. K., Chien W. J., Arunkumar A. I. Conformation of a protein kinase C substrate NG(28-43), and its analog in aqueous and sodium dodecyl sulfate micelle solutions. Biophys J. 1997 Feb;72(2 Pt 1):554–566. doi: 10.1016/s0006-3495(97)78695-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clore G. M., Nilges M., Brünger A. T., Karplus M., Gronenborn A. M. A comparison of the restrained molecular dynamics and distance geometry methods for determining three-dimensional structures of proteins on the basis of interproton distances. FEBS Lett. 1987 Mar 23;213(2):269–277. doi: 10.1016/0014-5793(87)81504-1. [DOI] [PubMed] [Google Scholar]
  10. Conradt M., Stoffel W. Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J Neurochem. 1997 Mar;68(3):1244–1251. doi: 10.1046/j.1471-4159.1997.68031244.x. [DOI] [PubMed] [Google Scholar]
  11. Cooper J. A., Esch F. S., Taylor S. S., Hunter T. Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J Biol Chem. 1984 Jun 25;259(12):7835–7841. [PubMed] [Google Scholar]
  12. Dickens M., Tavaré J. M., Clack B., Ellis L., Denton R. M. Phosphorylation of tyrosines 1158, 1162 and 1163 on a synthetic dodecapeptide by the insulin receptor protein-tyrosine kinase. Biochem Biophys Res Commun. 1991 Jan 31;174(2):772–778. doi: 10.1016/0006-291x(91)91484-t. [DOI] [PubMed] [Google Scholar]
  13. Fischer H., Machen T. E. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel. Biophys J. 1996 Dec;71(6):3073–3082. doi: 10.1016/S0006-3495(96)79501-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrison R. W., Chatterjee D., Weber I. T. Analysis of six protein structures predicted by comparative modeling techniques. Proteins. 1995 Dec;23(4):463–471. doi: 10.1002/prot.340230402. [DOI] [PubMed] [Google Scholar]
  15. Hayes G., Busch A. E., Lang F., Biber J., Murer H. Protein kinase C consensus sites and the regulation of renal Na/Pi-cotransport (NaPi-2) expressed in XENOPUS laevis oocytes. Pflugers Arch. 1995 Sep;430(5):819–824. doi: 10.1007/BF00386181. [DOI] [PubMed] [Google Scholar]
  16. Hou J., McKeehan K., Kan M., Carr S. A., Huddleston M. J., Crabb J. W., McKeehan W. L. Identification of tyrosines 154 and 307 in the extracellular domain and 653 and 766 in the intracellular domain as phosphorylation sites in the heparin-binding fibroblast growth factor receptor tyrosine kinase (flg). Protein Sci. 1993 Jan;2(1):86–92. doi: 10.1002/pro.5560020109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katchalski-Katzir E., Shariv I., Eisenstein M., Friesem A. A., Aflalo C., Vakser I. A. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2195–2199. doi: 10.1073/pnas.89.6.2195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kennelly P. J., Krebs E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed] [Google Scholar]
  19. Kishimoto A., Nishiyama K., Nakanishi H., Uratsuji Y., Nomura H., Takeyama Y., Nishizuka Y. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1985 Oct 15;260(23):12492–12499. [PubMed] [Google Scholar]
  20. Kolaskar A. S., Samuel S. L. Analysis of inverted repeats in primary structure of proteins. Protein Seq Data Anal. 1991 Aug;4(2):105–110. [PubMed] [Google Scholar]
  21. Li H., Xie Z. Molecular cloning of two rat Na+/Pi cotransporters: evidence for differential tissue expression of transcripts. Cell Mol Biol Res. 1995;41(5):451–460. [PubMed] [Google Scholar]
  22. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mao B., Maggiora G. M., Chou K. C. Mass-weighted molecular dynamics simulation of cyclic polypeptides. Biopolymers. 1991 Aug;31(9):1077–1086. doi: 10.1002/bip.360310907. [DOI] [PubMed] [Google Scholar]
  24. Nishikawa K., Toker A., Johannes F. J., Songyang Z., Cantley L. C. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem. 1997 Jan 10;272(2):952–960. doi: 10.1074/jbc.272.2.952. [DOI] [PubMed] [Google Scholar]
  25. Saier M. H., Jr Bacterial protein kinases that recognize tertiary rather than primary structure? Res Microbiol. 1994 Nov-Dec;145(9):647–650. doi: 10.1016/0923-2508(94)90035-3. [DOI] [PubMed] [Google Scholar]
  26. Schratzberger P., Geiseler A., Dunzendorfer S., Reinisch N., Kähler C. M., Wiedermann C. J. Similar involvement of VIP receptor type I and type II in lymphocyte chemotaxis. J Neuroimmunol. 1998 Jul 1;87(1-2):73–81. doi: 10.1016/s0165-5728(98)00043-5. [DOI] [PubMed] [Google Scholar]
  27. Whitesides G. M., Mathias J. P., Seto C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science. 1991 Nov 29;254(5036):1312–1319. doi: 10.1126/science.1962191. [DOI] [PubMed] [Google Scholar]
  28. Woodgett J. R., Gould K. L., Hunter T. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem. 1986 Nov 17;161(1):177–184. doi: 10.1111/j.1432-1033.1986.tb10139.x. [DOI] [PubMed] [Google Scholar]
  29. Yoshimura K., Anzai C. [Cystic fibrosis]. Nihon Rinsho. 1996 Mar;54(3):825–833. [PubMed] [Google Scholar]
  30. Zaliani A., Pinori M., Ball H. L., DiGregorio G., Cremonesi P., Mascagni P. The interaction of myristylated peptides with the catalytic domain of protein kinase C revealed by their sequence palindromy and the identification of a myristyl binding site. Protein Eng. 1998 Sep;11(9):803–810. doi: 10.1093/protein/11.9.803. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES