Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 15;346(Pt 1):1–8.

Thioredoxin reductase.

D Mustacich 1, G Powis 1
PMCID: PMC1220815  PMID: 10657232

Abstract

The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases.

Full Text

The Full Text of this article is available as a PDF (122.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghib D. F., Bishop J. M. A 3' truncation of myc caused by chromosomal translocation in a human T-cell leukemia is tumorigenic when tested in established rat fibroblasts. Oncogene. 1991 Dec;6(12):2371–2375. [PubMed] [Google Scholar]
  2. Andersson M., Holmgren A., Spyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity. J Biol Chem. 1996 Apr 26;271(17):10116–10120. doi: 10.1074/jbc.271.17.10116. [DOI] [PubMed] [Google Scholar]
  3. Arnér E. S., Björnstedt M., Holmgren A. 1-Chloro-2,4-dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase. Loss of thioredoxin disulfide reductase activity is accompanied by a large increase in NADPH oxidase activity. J Biol Chem. 1995 Feb 24;270(8):3479–3482. doi: 10.1074/jbc.270.8.3479. [DOI] [PubMed] [Google Scholar]
  4. Arnér E. S., Nordberg J., Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem Biophys Res Commun. 1996 Aug 5;225(1):268–274. doi: 10.1006/bbrc.1996.1165. [DOI] [PubMed] [Google Scholar]
  5. Arscott L. D., Gromer S., Schirmer R. H., Becker K., Williams C. H., Jr The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3621–3626. doi: 10.1073/pnas.94.8.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Axley M. J., Böck A., Stadtman T. C. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8450–8454. doi: 10.1073/pnas.88.19.8450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baker A., Payne C. M., Briehl M. M., Powis G. Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res. 1997 Nov 15;57(22):5162–5167. [PubMed] [Google Scholar]
  8. Berggren M. M., Mangin J. F., Gasdaka J. R., Powis G. Effect of selenium on rat thioredoxin reductase activity: increase by supranutritional selenium and decrease by selenium deficiency. Biochem Pharmacol. 1999 Jan 15;57(2):187–193. doi: 10.1016/s0006-2952(98)00283-4. [DOI] [PubMed] [Google Scholar]
  9. Berggren M., Gallegos A., Gasdaska J. R., Gasdaska P. Y., Warneke J., Powis G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res. 1996 Nov-Dec;16(6B):3459–3466. [PubMed] [Google Scholar]
  10. Berggren M., Gallegos A., Gasdaska J., Powis G. Cellular thioredoxin reductase activity is regulated by selenium. Anticancer Res. 1997 Sep-Oct;17(5A):3377–3380. [PubMed] [Google Scholar]
  11. Bermano G., Arthur J. R., Hesketh J. E. Role of the 3' untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply. Biochem J. 1996 Dec 15;320(Pt 3):891–895. doi: 10.1042/bj3200891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
  13. Berry M. J., Harney J. W., Ohama T., Hatfield D. L. Selenocysteine insertion or termination: factors affecting UGA codon fate and complementary anticodon:codon mutations. Nucleic Acids Res. 1994 Sep 11;22(18):3753–3759. doi: 10.1093/nar/22.18.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Berry M. J., Kieffer J. D., Harney J. W., Larsen P. R. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem. 1991 Aug 5;266(22):14155–14158. [PubMed] [Google Scholar]
  15. Bischoff J. R., Casso D., Beach D. Human p53 inhibits growth in Schizosaccharomyces pombe. Mol Cell Biol. 1992 Apr;12(4):1405–1411. doi: 10.1128/mcb.12.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Björnstedt M., Hamberg M., Kumar S., Xue J., Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995 May 19;270(20):11761–11764. doi: 10.1074/jbc.270.20.11761. [DOI] [PubMed] [Google Scholar]
  17. Björnstedt M., Kumar S., Holmgren A. Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J Biol Chem. 1992 Apr 25;267(12):8030–8034. [PubMed] [Google Scholar]
  18. Buettner G. R., Jurkiewicz B. A. Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol Med. 1993 Jan;14(1):49–55. doi: 10.1016/0891-5849(93)90508-r. [DOI] [PubMed] [Google Scholar]
  19. Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem. 1989;58:79–110. doi: 10.1146/annurev.bi.58.070189.000455. [DOI] [PubMed] [Google Scholar]
  20. Casso D., Beach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1996 Oct 16;252(5):518–529. doi: 10.1007/BF02172398. [DOI] [PubMed] [Google Scholar]
  21. Chae H. Z., Chung S. J., Rhee S. G. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994 Nov 4;269(44):27670–27678. [PubMed] [Google Scholar]
  22. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  23. Chen C. C., McCall B. L., Moore E. C. Purification of thioredoxin reductase from the Novikoff rat tumor. Prep Biochem. 1977;7(2):165–177. doi: 10.1080/00327487708061633. [DOI] [PubMed] [Google Scholar]
  24. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  25. Clark L. C., Combs G. F., Jr, Turnbull B. W., Slate E. H., Chalker D. K., Chow J., Davis L. S., Glover R. A., Graham G. F., Gross E. G. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA. 1996 Dec 25;276(24):1957–1963. [PubMed] [Google Scholar]
  26. Das K. C., Guo X. L., White C. W. Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. Am J Physiol. 1999 Mar;276(3 Pt 1):L530–L539. doi: 10.1152/ajplung.1999.276.3.L530. [DOI] [PubMed] [Google Scholar]
  27. Freemerman A. J., Gallegos A., Powis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res. 1999 Aug 15;59(16):4090–4094. [PubMed] [Google Scholar]
  28. Fuchs J. Validity of the 'bioassay' for thioredoxin-reductase activity. Arch Dermatol. 1988 Jun;124(6):849–851. [PubMed] [Google Scholar]
  29. Fujiwara N., Fujii T., Fujii J., Taniguchi N. Functional expression of rat thioredoxin reductase: selenocysteine insertion sequence element is essential for the active enzyme. Biochem J. 1999 Jun 1;340(Pt 2):439–444. [PMC free article] [PubMed] [Google Scholar]
  30. Gallegos A., Berggren M., Gasdaska J. R., Powis G. Mechanisms of the regulation of thioredoxin reductase activity in cancer cells by the chemopreventive agent selenium. Cancer Res. 1997 Nov 1;57(21):4965–4970. [PubMed] [Google Scholar]
  31. Gasdaska J. R., Berggren M., Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995 Dec;6(12):1643–1650. [PubMed] [Google Scholar]
  32. Gasdaska J. R., Gasdaska P. Y., Gallegos A., Powis G. Human thioredoxin reductase gene localization to chromosomal position 12q23-q24.1 and mRNA distribution in human tissue. Genomics. 1996 Oct 15;37(2):257–259. doi: 10.1006/geno.1996.0554. [DOI] [PubMed] [Google Scholar]
  33. Gasdaska J. R., Harney J. W., Gasdaska P. Y., Powis G., Berry M. J. Regulation of human thioredoxin reductase expression and activity by 3'-untranslated region selenocysteine insertion sequence and mRNA instability elements. J Biol Chem. 1999 Sep 3;274(36):25379–25385. doi: 10.1074/jbc.274.36.25379. [DOI] [PubMed] [Google Scholar]
  34. Gasdaska P. Y., Berggren M. M., Berry M. J., Powis G. Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett. 1999 Jan 8;442(1):105–111. doi: 10.1016/s0014-5793(98)01638-x. [DOI] [PubMed] [Google Scholar]
  35. Gasdaska P. Y., Gasdaska J. R., Cochran S., Powis G. Cloning and sequencing of a human thioredoxin reductase. FEBS Lett. 1995 Oct 2;373(1):5–9. doi: 10.1016/0014-5793(95)01003-w. [DOI] [PubMed] [Google Scholar]
  36. Gladyshev V. N., Jeang K. T., Stadtman T. C. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6146–6151. doi: 10.1073/pnas.93.12.6146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gladyshev V. N., Stadtman T. C., Hatfield D. L., Jeang K. T. Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):835–839. doi: 10.1073/pnas.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Gorlatov S. N., Stadtman T. C. Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8520–8525. doi: 10.1073/pnas.95.15.8520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gromer S., Arscott L. D., Williams C. H., Jr, Schirmer R. H., Becker K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem. 1998 Aug 7;273(32):20096–20101. doi: 10.1074/jbc.273.32.20096. [DOI] [PubMed] [Google Scholar]
  40. Gromer S., Schirmer R. H., Becker K. The 58 kDa mouse selenoprotein is a BCNU-sensitive thioredoxin reductase. FEBS Lett. 1997 Jul 28;412(2):318–320. doi: 10.1016/s0014-5793(97)00816-8. [DOI] [PubMed] [Google Scholar]
  41. Gromer S., Wissing J., Behne D., Ashman K., Schirmer R. H., Flohé L., Becker K. A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. Biochem J. 1998 Jun 1;332(Pt 2):591–592. doi: 10.1042/bj3320591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Guaiquil V. H., Farber C. M., Golde D. W., Vera J. C. Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione. J Biol Chem. 1997 Apr 11;272(15):9915–9921. doi: 10.1074/jbc.272.15.9915. [DOI] [PubMed] [Google Scholar]
  43. Hainaut P., Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 1993 Oct 1;53(19):4469–4473. [PubMed] [Google Scholar]
  44. Hill K. E., McCollum G. W., Boeglin M. E., Burk R. F. Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun. 1997 May 19;234(2):293–295. doi: 10.1006/bbrc.1997.6618. [DOI] [PubMed] [Google Scholar]
  45. Hofmann E. R., Boyanapalli M., Lindner D. J., Weihua X., Hassel B. A., Jagus R., Gutierrez P. L., Kalvakolanu D. V., Hofman E. R. Thioredoxin reductase mediates cell death effects of the combination of beta interferon and retinoic acid. Mol Cell Biol. 1998 Nov;18(11):6493–6504. doi: 10.1128/mcb.18.11.6493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Holmgren A., Björnstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199–208. doi: 10.1016/0076-6879(95)52023-6. [DOI] [PubMed] [Google Scholar]
  47. Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem. 1977 Jul 10;252(13):4600–4606. [PubMed] [Google Scholar]
  48. Holmgren A., Lyckeborg C. Enzymatic reduction of alloxan by thioredoxin and NADPH-thioredoxin reductase. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5149–5152. doi: 10.1073/pnas.77.9.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Holmgren A. Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J Biol Chem. 1979 Sep 25;254(18):9113–9119. [PubMed] [Google Scholar]
  50. Hori K., Hatfield D., Maldarelli F., Lee B. J., Clouse K. A. Selenium supplementation suppresses tumor necrosis factor alpha-induced human immunodeficiency virus type 1 replication in vitro. AIDS Res Hum Retroviruses. 1997 Oct 10;13(15):1325–1332. doi: 10.1089/aid.1997.13.1325. [DOI] [PubMed] [Google Scholar]
  51. Koishi R., Kawashima I., Yoshimura C., Sugawara M., Serizawa N. Cloning and characterization of a novel oxidoreductase KDRF from a human bone marrow-derived stromal cell line KM-102. J Biol Chem. 1997 Jan 24;272(4):2570–2577. doi: 10.1074/jbc.272.4.2570. [DOI] [PubMed] [Google Scholar]
  52. Kumar S., Björnstedt M., Holmgren A. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem. 1992 Jul 15;207(2):435–439. doi: 10.1111/j.1432-1033.1992.tb17068.x. [DOI] [PubMed] [Google Scholar]
  53. Kunkel M. W., Kirkpatrick D. L., Johnson J. I., Powis G. Cell line-directed screening assay for inhibitors of thioredoxin reductase signaling as potential anti-cancer drugs. Anticancer Drug Des. 1997 Dec;12(8):659–670. [PubMed] [Google Scholar]
  54. LAURENT T. C., MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3436–3444. [PubMed] [Google Scholar]
  55. Lane D. P. p53 and human cancers. Br Med Bull. 1994 Jul;50(3):582–599. doi: 10.1093/oxfordjournals.bmb.a072911. [DOI] [PubMed] [Google Scholar]
  56. Lee S. R., Kim J. R., Kwon K. S., Yoon H. W., Levine R. L., Ginsburg A., Rhee S. G. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem. 1999 Feb 19;274(8):4722–4734. doi: 10.1074/jbc.274.8.4722. [DOI] [PubMed] [Google Scholar]
  57. Lennon B. W., Williams C. H., Jr Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis. Biochemistry. 1996 Apr 16;35(15):4704–4712. doi: 10.1021/bi952521i. [DOI] [PubMed] [Google Scholar]
  58. Lennon B. W., Williams C. H., Jr Reductive half-reaction of thioredoxin reductase from Escherichia coli. Biochemistry. 1997 Aug 5;36(31):9464–9477. doi: 10.1021/bi970307j. [DOI] [PubMed] [Google Scholar]
  59. Liu S. Y., Stadtman T. C. Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6138–6141. doi: 10.1073/pnas.94.12.6138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Low S. C., Berry M. J. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci. 1996 Jun;21(6):203–208. [PubMed] [Google Scholar]
  61. Luthman M., Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982 Dec 21;21(26):6628–6633. doi: 10.1021/bi00269a003. [DOI] [PubMed] [Google Scholar]
  62. Marcocci L., Flohé L., Packer L. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase. Biofactors. 1997;6(3):351–358. doi: 10.1002/biof.5520060305. [DOI] [PubMed] [Google Scholar]
  63. Mau B. L., Powis G. Inhibition of cellular thioredoxin reductase by diaziquone and doxorubicin. Relationship to the inhibition of cell proliferation and decreased ribonucleotide reductase activity. Biochem Pharmacol. 1992 Apr 1;43(7):1621–1627. [PubMed] [Google Scholar]
  64. Mau B. L., Powis G. Mechanism-based inhibition of thioredoxin reductase by antitumor quinoid compounds. Biochem Pharmacol. 1992 Apr 1;43(7):1613–1620. doi: 10.1016/0006-2952(92)90220-d. [DOI] [PubMed] [Google Scholar]
  65. May J. M., Cobb C. E., Mendiratta S., Hill K. E., Burk R. F. Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J Biol Chem. 1998 Sep 4;273(36):23039–23045. doi: 10.1074/jbc.273.36.23039. [DOI] [PubMed] [Google Scholar]
  66. May J. M., Mendiratta S., Hill K. E., Burk R. F. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem. 1997 Sep 5;272(36):22607–22610. doi: 10.1074/jbc.272.36.22607. [DOI] [PubMed] [Google Scholar]
  67. Miller S. M., Moore M. J., Massey V., Williams C. H., Jr, Distefano M. D., Ballou D. P., Walsh C. T. Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase. Biochemistry. 1989 Feb 7;28(3):1194–1205. doi: 10.1021/bi00429a037. [DOI] [PubMed] [Google Scholar]
  68. Miranda-Vizuete A., Damdimopoulos A. E., Pedrajas J. R., Gustafsson J. A., Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem. 1999 Apr;261(2):405–412. doi: 10.1046/j.1432-1327.1999.00286.x. [DOI] [PubMed] [Google Scholar]
  69. Nelson R. L., Davis F. G., Sutter E., Kikendall J. W., Sobin L. H., Milner J. A., Bowen P. E. Serum selenium and colonic neoplastic risk. Dis Colon Rectum. 1995 Dec;38(12):1306–1310. doi: 10.1007/BF02049157. [DOI] [PubMed] [Google Scholar]
  70. Oblong J. E., Berggren M., Gasdaska P. Y., Powis G. Site-directed mutagenesis of active site cysteines in human thioredoxin produces competitive inhibitors of human thioredoxin reductase and elimination of mitogenic properties of thioredoxin. J Biol Chem. 1994 Apr 22;269(16):11714–11720. [PubMed] [Google Scholar]
  71. Oblong J. E., Gasdaska P. Y., Sherrill K., Powis G. Purification of human thioredoxin reductase: properties and characterization by absorption and circular dichroism spectroscopy. Biochemistry. 1993 Jul 20;32(28):7271–7277. doi: 10.1021/bi00079a025. [DOI] [PubMed] [Google Scholar]
  72. Oblong J. E., Powis G. A comment on the absence of calcium regulation of human thioredoxin reductase. FEBS Lett. 1993 Nov 8;334(1):1–2. doi: 10.1016/0014-5793(93)81667-o. [DOI] [PubMed] [Google Scholar]
  73. Pearson G. D., Merrill G. F. Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J Biol Chem. 1998 Mar 6;273(10):5431–5434. doi: 10.1074/jbc.273.10.5431. [DOI] [PubMed] [Google Scholar]
  74. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  75. Rietveld P., Arscott L. D., Berry A., Scrutton N. S., Deonarain M. P., Perham R. N., Williams C. H., Jr Reductive and oxidative half-reactions of glutathione reductase from Escherichia coli. Biochemistry. 1994 Nov 22;33(46):13888–13895. doi: 10.1021/bi00250a043. [DOI] [PubMed] [Google Scholar]
  76. Russel M., Model P. Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem. 1988 Jun 25;263(18):9015–9019. [PubMed] [Google Scholar]
  77. Schallreuter K. U., Gleason F. K., Wood J. M. The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase and ribonucleotide reductase. Biochim Biophys Acta. 1990 Aug 13;1054(1):14–20. doi: 10.1016/0167-4889(90)90199-n. [DOI] [PubMed] [Google Scholar]
  78. Schallreuter K. U., Hordinsky M. K., Wood J. M. Thioredoxin reductase. Role in free radical reduction in different hypopigmentation disorders. Arch Dermatol. 1987 May;123(5):615–619. doi: 10.1001/archderm.123.5.615. [DOI] [PubMed] [Google Scholar]
  79. Schallreuter K. U., Jänner M., Mensing H., Breitbart E. W., Berger J., Wood J. M. Thioredoxin reductase activity at the surface of human primary cutaneous melanomas and their surrounding skin. Int J Cancer. 1991 Apr 22;48(1):15–19. doi: 10.1002/ijc.2910480104. [DOI] [PubMed] [Google Scholar]
  80. Schallreuter K. U., Pittelkow M. R., Wood J. M. Free radical reduction by thioredoxin reductase at the surface of normal and vitiliginous human keratinocytes. J Invest Dermatol. 1986 Dec;87(6):728–732. doi: 10.1111/1523-1747.ep12456848. [DOI] [PubMed] [Google Scholar]
  81. Schallreuter K. U., Wood J. M. Azelaic acid as a competitive inhibitor of thioredoxin reductase in human melanoma cells. Cancer Lett. 1987 Sep;36(3):297–305. doi: 10.1016/0304-3835(87)90023-1. [DOI] [PubMed] [Google Scholar]
  82. Schallreuter K. U., Wood J. M. Calcium regulates thioredoxin reductase in human metastatic melanoma. Biochim Biophys Acta. 1989 Aug 31;997(3):242–247. doi: 10.1016/0167-4838(89)90194-5. [DOI] [PubMed] [Google Scholar]
  83. Schallreuter K. U., Wood J. M. The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis. Biochem Biophys Res Commun. 1986 Apr 29;136(2):630–637. doi: 10.1016/0006-291x(86)90487-0. [DOI] [PubMed] [Google Scholar]
  84. Schallreuter K. U., Wood J. M. The stereospecific suicide inhibition of human melanoma thioredoxin reductase by 13-cis-retinoic acid. Biochem Biophys Res Commun. 1989 Apr 28;160(2):573–579. doi: 10.1016/0006-291x(89)92471-6. [DOI] [PubMed] [Google Scholar]
  85. Smith A. D., Guidry C. A., Morris V. C., Levander O. A. Aurothioglucose inhibits murine thioredoxin reductase activity in vivo. J Nutr. 1999 Jan;129(1):194–198. doi: 10.1093/jn/129.1.194. [DOI] [PubMed] [Google Scholar]
  86. Spector A., Yan G. Z., Huang R. R., McDermott M. J., Gascoyne P. R., Pigiet V. The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem. 1988 Apr 5;263(10):4984–4990. [PubMed] [Google Scholar]
  87. Spyrou G., Björnstedt M., Skog S., Holmgren A. Selenite and selenate inhibit human lymphocyte growth via different mechanisms. Cancer Res. 1996 Oct 1;56(19):4407–4412. [PubMed] [Google Scholar]
  88. Spyrou G., Enmark E., Miranda-Vizuete A., Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem. 1997 Jan 31;272(5):2936–2941. doi: 10.1074/jbc.272.5.2936. [DOI] [PubMed] [Google Scholar]
  89. Stadtman T. C. Selenocysteine. Annu Rev Biochem. 1996;65:83–100. doi: 10.1146/annurev.bi.65.070196.000503. [DOI] [PubMed] [Google Scholar]
  90. Tamura T., Stadtman T. C. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1006–1011. doi: 10.1073/pnas.93.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Torigoe K., Wakasugi N., Sakaizumi N., Ikejima T., Suzuki H., Kojiri K., Suda H. BE-40644, a new human thioredoxin system inhibitor isolated from Actinoplanes sp. A40644. J Antibiot (Tokyo) 1996 Mar;49(3):314–317. doi: 10.7164/antibiotics.49.314. [DOI] [PubMed] [Google Scholar]
  92. Tsang M. L., Weatherbee J. A. Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7478–7482. doi: 10.1073/pnas.78.12.7478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Veine D. M., Ohnishi K., Williams C. H., Jr Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Protein Sci. 1998 Feb;7(2):369–375. doi: 10.1002/pro.5560070217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Waksman G., Krishna T. S., Williams C. H., Jr, Kuriyan J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. J Mol Biol. 1994 Feb 25;236(3):800–816. [PubMed] [Google Scholar]
  95. Williams C. H., Jr Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J. 1995 Oct;9(13):1267–1276. doi: 10.1096/fasebj.9.13.7557016. [DOI] [PubMed] [Google Scholar]
  96. Xu N., Chen C. Y., Shyu A. B. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol. 1997 Aug;17(8):4611–4621. doi: 10.1128/mcb.17.8.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Yang J., Liu X., Bhalla K., Kim C. N., Ibrado A. M., Cai J., Peng T. I., Jones D. P., Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997 Feb 21;275(5303):1129–1132. doi: 10.1126/science.275.5303.1129. [DOI] [PubMed] [Google Scholar]
  98. Zhivotovsky B., Orrenius S., Brustugun O. T., Døskeland S. O. Injected cytochrome c induces apoptosis. Nature. 1998 Jan 29;391(6666):449–450. doi: 10.1038/35060. [DOI] [PubMed] [Google Scholar]
  99. Zhong L., Arnér E. S., Ljung J., Aslund F., Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem. 1998 Apr 10;273(15):8581–8591. doi: 10.1074/jbc.273.15.8581. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES