Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 15;346(Pt 1):9–15.

Purification, characterization and gene cloning of two alpha-L-arabinofuranosidases from streptomyces chartreusis GS901.

N Matsuo 1, S Kaneko 1, A Kuno 1, H Kobayashi 1, I Kusakabe 1
PMCID: PMC1220816  PMID: 10657233

Abstract

alpha-L-Arabinofuranosidases I and II were purified from the culture filtrate of Streptomyces chartreusis GS901 and were found to have molecular masses of 80 and 37 kDa and pI values of 6.6 and 7.5 respectively. Both enzymes demonstrated slight reactivity towards arabinoxylan and arabinogalactan as substrates but did not hydrolyse gum arabic or arabinoxylo-oligosaccharides. alpha-L-Arabinofuranosidase I hydrolysed all of the alpha-linkage types that normally occur between two alpha-L-arabinofuranosyl residues, with the following decreasing order of reactivity being observed for the respective disaccharide linkages: alpha-(1-->2) alpha-(1-->3) alpha-(1-->5). This enzyme cleaved the (1-->3) linkages of the arabinosyl side-chains of methyl 3, 5-di-O-alpha-L-arabinofuranosyl-alpha-L-arabinofuranoside in preference to the (1-->5) linkages. alpha-L-Arabinofuranosidase I hydrolysed approx. 30% of the arabinan but hydrolysed hardly any linear arabinan. In contrast, alpha-L-Arabinofuranosidase II hydrolysed only (1-->5)-arabinofuranobioside among the regioisomeric methyl arabinobiosides and did not hydrolyse the arabinotrioside. Linear 1-->5-linked arabinan was a good substrate for this enzyme, but it hydrolysed hardly any of the arabinan. Synergism between the two enzymes was observed in the conversion of arabinan and debranched arabinan into arabinose. Complete amino acid sequencing of alpha-L-arabinofuranosidase I indicated that the enzyme consists of a central catalytic domain that belongs to family 51 of the glycoside hydrolases and additionally that unknown functional domains exist in the N-terminal and C-terminal regions. The amino acid sequence of alpha-L-arabinofuranosidase II indicated that this enzyme belongs to family 43 of the glycoside hydrolase family and, as this is the first report of an exo-1, 5-alpha-L-arabinofuranosidase, it represents a novel type of enzyme.

Full Text

The Full Text of this article is available as a PDF (181.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dekker R. F., Richards G. N. Hemicellulases: their occurrence, purification, properties, and mode of action. Adv Carbohydr Chem Biochem. 1976;32:277–352. doi: 10.1016/s0065-2318(08)60339-x. [DOI] [PubMed] [Google Scholar]
  2. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kaneko S., Arimoto M., Ohba M., Kobayashi H., Ishii T., Kusakabe I. Purification and substrate specificities of two alpha-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl Environ Microbiol. 1998 Oct;64(10):4021–4027. doi: 10.1128/aem.64.10.4021-4027.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaneko S., Ishii T., Kobayashi H., Kusakabe I. Substrate specificities of alpha-L-arabinofuranosidases produced by two species of Aspergillus niger. Biosci Biotechnol Biochem. 1998 Apr;62(4):695–699. doi: 10.1271/bbb.62.695. [DOI] [PubMed] [Google Scholar]
  5. Kaneko S., Kawabata Y., Ishii T., Gama Y., Kusakabe I. The core trisaccharide of alpha-L-arabinofuranan: synthesis of methyl 3,5-di-O-alpha-L-arabinofuranosyl-alpha-L-arabinofuranoside. Carbohydr Res. 1995 Mar 17;268(2):307–311. doi: 10.1016/0008-6215(94)00327-c. [DOI] [PubMed] [Google Scholar]
  6. Kaneko S., Kuno A., Matsuo N., Ishii T., Kobayashi H., Hayashi K., Kusakabe I. Substrate specificity of the alpha-L-arabinofuranosidase from Trichoderma reesei. Biosci Biotechnol Biochem. 1998 Nov;62(11):2205–2210. doi: 10.1271/bbb.62.2205. [DOI] [PubMed] [Google Scholar]
  7. Kaneko S., Kusakabe I. Substrate specificity of alpha-L-arabinofuranosidase from Bacillus subtilis 3-6 toward arabinofurano-oligosaccharides. Biosci Biotechnol Biochem. 1995 Nov;59(11):2132–2133. doi: 10.1271/bbb.59.2132. [DOI] [PubMed] [Google Scholar]
  8. Kaneko S., Sano M., Kusakabe I. Purification and some properties of alpha-L-arabinofuranosidase from Bacillus subtilis 3-6. Appl Environ Microbiol. 1994 Sep;60(9):3425–3428. doi: 10.1128/aem.60.9.3425-3428.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaneko S., Shimasaki T., Kusakabe I. Purification and some properties of intracellular alpha-L-arabinofuranosidase from Aspergillus niger 5-16. Biosci Biotechnol Biochem. 1993 Jul;57(7):1161–1165. doi: 10.1271/bbb.57.1161. [DOI] [PubMed] [Google Scholar]
  10. Kawabata Y., Kaneko S., Kusakabe I., Gama Y. Synthesis of regioisomeric methyl alpha-L-arabinofuranobiosides. Carbohydr Res. 1995 Feb 1;267(1):39–47. doi: 10.1016/0008-6215(94)00290-v. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Manabe T., Tachi K., Kojima K., Okuyama T. Two-dimensional electrophoresis of plasma proteins without denaturing agents. J Biochem. 1979 Mar;85(3):649–659. [PubMed] [Google Scholar]
  14. McKie V. A., Black G. W., Millward-Sadler S. J., Hazlewood G. P., Laurie J. I., Gilbert H. J. Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo- mode of action. Biochem J. 1997 Apr 15;323(Pt 2):547–555. doi: 10.1042/bj3230547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pitson S. M., Voragen A. G., Vincken J. P., Beldman G. Action patterns and mapping of the substrate-binding regions of endo-(1-->5)-alpha-L-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydr Res. 1997 Sep 5;303(2):207–218. doi: 10.1016/s0008-6215(97)00159-6. [DOI] [PubMed] [Google Scholar]
  16. Scott M., Pickersgill R. W., Hazlewood G. P., Gilbert H. J., Harris G. W. Crystallization and preliminary X-ray analysis of arabinanase A from Pseudomonas fluorescens subspecies cellulosa. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):544–546. doi: 10.1107/s0907444998011500. [DOI] [PubMed] [Google Scholar]
  17. Seri K., Sanai K., Matsuo N., Kawakubo K., Xue C., Inoue S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism. 1996 Nov;45(11):1368–1374. doi: 10.1016/s0026-0495(96)90117-1. [DOI] [PubMed] [Google Scholar]
  18. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  19. Triglia T., Peterson M. G., Kemp D. J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 1988 Aug 25;16(16):8186–8186. doi: 10.1093/nar/16.16.8186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  21. Yoshida S., Kusakabe I., Matsuo N., Shimizu K., Yasui T., Murakami K. Structure of rice-straw arabinoglucuronoxylan and specificity of Streptomyces xylanase toward the xylan. Agric Biol Chem. 1990 Feb;54(2):449–457. [PubMed] [Google Scholar]
  22. Zverlov V. V., Liebl W., Bachleitner M., Schwarz W. H. Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of alpha-L-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. FEMS Microbiol Lett. 1998 Jul 15;164(2):337–343. doi: 10.1111/j.1574-6968.1998.tb13107.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES