Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 15;346(Pt 1):17–24.

Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes.

M G Paton 1, S H Karunaratne 1, E Giakoumaki 1, N Roberts 1, J Hemingway 1
PMCID: PMC1220817  PMID: 10657234

Abstract

The amplification of carboxylesterase structural genes followed by their overexpression is the most common mechanism of resistance to organophosphorus insecticides in Culex mosquitoes. Most resistant Culex quinquefasciatus mosquitoes have co-amplified estalpha2(1) and estbeta2(1) genes. Recently, Southern, DNA dot-blot analysis and phosphorimaging technology were used to quantify the est gene copy number in aphids and mosquitoes. Although more accurate than autoradiography, this method relies on probe hybridization, which can be variable. We have directly measured gene and mRNA copy number by using real-time quantitative PCRs in mosquitoes. The acquisition of fluorescence from incorporation of the double-strand-specific dye SYBR GreenI into a PCR product once per cycle is used to provide an absolute quantification of the initial template copy number. Thus it has been possible to show that estalpha2(1) and estbeta2(1) are co-amplified approx. 80-fold in the genome of the resistant PelRR strain of C. quinquefasciatus. The two genes, although co-amplified in a 1:1 ratio, are differentially transcribed: the estbeta2(1) gene from this amplicon has greater transcription than estalpha2(1) in all individual mosquito larvae tested, with an average ratio of 10:1. Purified esterases from mosquito homogenates were found in a ratio of 3:1, which, combined with the quantitative mRNA data, suggests the operation of both transcriptional and translational control mechanisms to regulate the expression of the amplified genes in C. quinquefasciatus insecticide-resistant mosquitoes.

Full Text

The Full Text of this article is available as a PDF (219.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amin A. M., Peiris H. T. Detection and selection of organophosphate and carbamate resistance in Culex quinquefasciatus from Saudi Arabia. Med Vet Entomol. 1990 Jul;4(3):269–273. doi: 10.1111/j.1365-2915.1990.tb00439.x. [DOI] [PubMed] [Google Scholar]
  2. Callaghan A., Guillemaud T., Makate N., Raymond M. Polymorphisms and fluctuations in copy number of amplified esterase genes in Culex pipiens mosquitoes. Insect Mol Biol. 1998 Aug;7(3):295–300. doi: 10.1111/j.1365-2583.1998.00077.x. [DOI] [PubMed] [Google Scholar]
  3. DeSilva D., Hemingway J., Ranson H., Vaughan A. Resistance to insecticides in insect vectors of disease: est alpha 3, a novel amplified esterase associated with amplified est beta 1 from insecticide resistant strains of the mosquito Culex quinquesfasciatus. Exp Parasitol. 1997 Nov;87(3):253–259. doi: 10.1006/expr.1997.4245. [DOI] [PubMed] [Google Scholar]
  4. Field L. M., Blackman R. L., Tyler-Smith C., Devonshire A. L. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J. 1999 May 1;339(Pt 3):737–742. [PMC free article] [PubMed] [Google Scholar]
  5. Field L. M., Devonshire A. L. Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer). Biochem J. 1997 Mar 15;322(Pt 3):867–871. doi: 10.1042/bj3220867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Field L. M., Devonshire A. L., Tyler-Smith C. Analysis of amplicons containing the esterase genes responsible for insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Biochem J. 1996 Jan 15;313(Pt 2):543–547. doi: 10.1042/bj3130543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Georghiou G. P., Pasteur N., Hawley M. K. Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefaciatus from California. J Econ Entomol. 1980 Apr;73(2):301–305. doi: 10.1093/jee/73.2.301. [DOI] [PubMed] [Google Scholar]
  8. Gullemaud T., Makate N., Raymond M., Hirst B., Callaghan A. Esterase gene amplification in Culex pipiens. Insect Mol Biol. 1997 Nov;6(4):319–327. [PubMed] [Google Scholar]
  9. Hemingway J., Hawkes N., Prapanthadara L., Jayawardenal K. G., Ranson H. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philos Trans R Soc Lond B Biol Sci. 1998 Oct 29;353(1376):1695–1699. doi: 10.1098/rstb.1998.0320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hemingway J., Karunaratne S. H. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 1998 Jan;12(1):1–12. doi: 10.1046/j.1365-2915.1998.00082.x. [DOI] [PubMed] [Google Scholar]
  11. Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 1993 Sep;11(9):1026–1030. doi: 10.1038/nbt0993-1026. [DOI] [PubMed] [Google Scholar]
  12. Karunaratne S. H., Hemingway J., Jayawardena K. G., Dassanayaka V., Vaughan A. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. J Biol Chem. 1995 Dec 29;270(52):31124–31128. doi: 10.1074/jbc.270.52.31124. [DOI] [PubMed] [Google Scholar]
  13. Karunaratne S. H., Jayawardena K. G., Hemingway J., Ketterman A. J. Characterization of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefasciatus. Biochem J. 1993 Sep 1;294(Pt 2):575–579. doi: 10.1042/bj2940575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karunaratne S. H., Vaughan A., Paton M. G., Hemingway J. Amplification of a serine esterase gene is involved in insecticide resistance in Sri Lankan Culex tritaeniorhynchus. Insect Mol Biol. 1998 Nov;7(4):307–315. doi: 10.1046/j.1365-2583.1998.740307.x. [DOI] [PubMed] [Google Scholar]
  15. Mouchès C., Pasteur N., Bergé J. B., Hyrien O., Raymond M., de Saint Vincent B. R., de Silvestri M., Georghiou G. P. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science. 1986 Aug 15;233(4765):778–780. doi: 10.1126/science.3755546. [DOI] [PubMed] [Google Scholar]
  16. Paton M. G., Barker G. C., Matsuoka H., Ramesar J., Janse C. J., Waters A. P., Sinden R. E. Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol. 1993 Jun;59(2):263–275. doi: 10.1016/0166-6851(93)90224-l. [DOI] [PubMed] [Google Scholar]
  17. Poirié M., Raymond M., Pasteur N. Identification of two distinct amplifications of the esterase B locus in Culex pipiens (L.) mosquitoes from Mediterranean countries. Biochem Genet. 1992 Feb;30(1-2):13–26. doi: 10.1007/BF00554424. [DOI] [PubMed] [Google Scholar]
  18. Raymond M., Beyssat-Arnaouty V., Sivasubramanian N., Mouchès C., Georghiou G. P., Pasteur N. Amplification of various esterase B's responsible for organophosphate resistance in Culex mosquitoes. Biochem Genet. 1989 Aug;27(7-8):417–423. doi: 10.1007/BF02399670. [DOI] [PubMed] [Google Scholar]
  19. Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
  20. Raymond M., Qiao C. L., Callaghan A. Esterase polymorphism in insecticide susceptible populations of the mosquito Culex pipiens. Genet Res. 1996 Feb;67(1):19–26. doi: 10.1017/s0016672300033449. [DOI] [PubMed] [Google Scholar]
  21. Ririe K. M., Rasmussen R. P., Wittwer C. T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997 Feb 15;245(2):154–160. doi: 10.1006/abio.1996.9916. [DOI] [PubMed] [Google Scholar]
  22. Rooker S., Guillemaud T., Bergé J., Pasteur N., Raymond M. Coamplification of esterase A and B genes as a single unit in Culex pipiens mosquitoes. Heredity (Edinb) 1996 Nov;77(Pt 5):555–561. [PubMed] [Google Scholar]
  23. Salazar C. E., Hamm D. M., Wesson D. M., Beard C. B., Kumar V., Collins F. H. A cytoskeletal actin gene in the mosquito Anopheles gambiae. Insect Mol Biol. 1994 Feb;3(1):1–13. doi: 10.1111/j.1365-2583.1994.tb00145.x. [DOI] [PubMed] [Google Scholar]
  24. Thompson J., Sinden R. E. In situ detection of Pbs21 mRNA during sexual development of Plasmodium berghei. Mol Biochem Parasitol. 1994 Dec;68(2):189–196. doi: 10.1016/0166-6851(94)90164-3. [DOI] [PubMed] [Google Scholar]
  25. Vaughan A., Hawkes N., Hemingway J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem J. 1997 Jul 15;325(Pt 2):359–365. doi: 10.1042/bj3250359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vaughan A., Hemingway J. Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J Biol Chem. 1995 Jul 14;270(28):17044–17049. doi: 10.1074/jbc.270.28.17044. [DOI] [PubMed] [Google Scholar]
  27. Vaughan A., Rodriguez M., Hemingway J. The independent gene amplification of electrophoretically indistinguishable B esterases from the insecticide-resistant mosquito Culex quinquefasciatus. Biochem J. 1995 Jan 15;305(Pt 2):651–658. doi: 10.1042/bj3050651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wittwer C. T., Marshall B. C., Reed G. H., Cherry J. L. Rapid cycle allele-specific amplification: studies with the cystic fibrosis delta F508 locus. Clin Chem. 1993 May;39(5):804–809. [PubMed] [Google Scholar]
  29. Wittwer C. T., Ririe K. M., Andrew R. V., David D. A., Gundry R. A., Balis U. J. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques. 1997 Jan;22(1):176–181. doi: 10.2144/97221pf02. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES