Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 15;346(Pt 1):45–51.

Genomic organization, chromosomal mapping and promoter analysis of the mouse selenocysteine tRNA gene transcription-activating factor (mStaf) gene.

K Adachi 1, M Katsuyama 1, S Song 1, T Oka 1
PMCID: PMC1220821  PMID: 10657238

Abstract

mStaf is a zinc-finger protein that activates the transcription of the mouse selenocysteine tRNA gene. The mStaf gene is approx. 35 kb long and split into 16 exons. All exon-intron junction sequences conform to the GT/AG rule. The transcription start site is located 83 bp upstream of the initiation codon. Chromosomal mapping localized the gene to mouse chromosome 7, region E3-F1. Sequence analysis of the proximal promoter region revealed several potential regulatory elements; these include the recognition elements of Sp1, Nkx, CP2, E2A, SIF (SIS-inducible factor), TFII-I and cAMP-responsive element (CRE), but no TATA sequences. Transfection experiments demonstrated that the 5'-flanking region (-1894 to +37) of the mStaf gene drives transcription in mouse NMuMG cells and that a construct containing a fragment from -387 to +37 showed the highest transcriptional activity. Deletion and mutation experiments suggested that four Sp1 sites played an important role for the basal promoter activity. Furthermore, electrophoretic mobility-shift assays demonstrated that Sp3 but not other Sp (specificity protein) family members binds to three of the Sp1 sites. Our present study suggests that Sp3 is involved in the basal transcriptional activation of the mStaf gene.

Full Text

The Full Text of this article is available as a PDF (208.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves C., Valverde C. Type I, 5'-monodeiodinase activity in the lactating mammary gland. Endocrinology. 1989 Jun;124(6):2818–2820. doi: 10.1210/endo-124-6-2818. [DOI] [PubMed] [Google Scholar]
  2. Adachi K., Saito H., Tanaka T., Oka T. Molecular cloning and characterization of the murine staf cDNA encoding a transcription activating factor for the selenocysteine tRNA gene in mouse mammary gland. J Biol Chem. 1998 Apr 10;273(15):8598–8606. doi: 10.1074/jbc.273.15.8598. [DOI] [PubMed] [Google Scholar]
  3. Adachi K., Tanaka T., Saito H., Oka T. Hormonal induction of mouse selenocysteine transfer ribonucleic acid (tRNA) gene transcription-activating factor and its functional importance in the selenocysteine tRNA gene transcription in mouse mammary gland. Endocrinology. 1999 Feb;140(2):618–623. doi: 10.1210/endo.140.2.6501. [DOI] [PubMed] [Google Scholar]
  4. Azizkhan J. C., Jensen D. E., Pierce A. J., Wade M. Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit Rev Eukaryot Gene Expr. 1993;3(4):229–254. [PubMed] [Google Scholar]
  5. Bernard O., Burkitt V., Webb G. C., Bottema C. D., Nicholl J., Sutherland G. R., Matthew P. Structure and chromosomal localization of the genomic locus encoding the Kiz1 LIM-kinase gene. Genomics. 1996 Aug 1;35(3):593–596. doi: 10.1006/geno.1996.0403. [DOI] [PubMed] [Google Scholar]
  6. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  7. Bonham K., Fujita D. J. Organization and analysis of the promoter region and 5' non-coding exons of the human c-src proto-oncogene. Oncogene. 1993 Jul;8(7):1973–1981. [PubMed] [Google Scholar]
  8. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  9. Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
  10. Burk R. F., Hill K. E. Regulation of selenoproteins. Annu Rev Nutr. 1993;13:65–81. doi: 10.1146/annurev.nu.13.070193.000433. [DOI] [PubMed] [Google Scholar]
  11. Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
  12. Eggenschwiler J., Ludwig T., Fisher P., Leighton P. A., Tilghman S. M., Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev. 1997 Dec 1;11(23):3128–3142. doi: 10.1101/gad.11.23.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans T., DeChiara T., Efstratiadis A. A promoter of the rat insulin-like growth factor II gene consists of minimal control elements. J Mol Biol. 1988 Jan 5;199(1):61–81. doi: 10.1016/0022-2836(88)90379-8. [DOI] [PubMed] [Google Scholar]
  14. Giannoukakis N., Deal C., Paquette J., Goodyer C. G., Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993 May;4(1):98–101. doi: 10.1038/ng0593-98. [DOI] [PubMed] [Google Scholar]
  15. Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heng H. H., Squire J., Tsui L. C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9509–9513. doi: 10.1073/pnas.89.20.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heng H. H., Tsui L. C. Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma. 1993 May;102(5):325–332. doi: 10.1007/BF00661275. [DOI] [PubMed] [Google Scholar]
  18. Hoffman E. K., Trusko S. P., Murphy M., George D. L. An S1 nuclease-sensitive homopurine/homopyrimidine domain in the c-Ki-ras promoter interacts with a nuclear factor. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2705–2709. doi: 10.1073/pnas.87.7.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Höcker M., Raychowdhury R., Plath T., Wu H., O'Connor D. T., Wiedenmann B., Rosewicz S., Wang T. C. Sp1 and CREB mediate gastrin-dependent regulation of chromogranin A promoter activity in gastric carcinoma cells. J Biol Chem. 1998 Dec 18;273(51):34000–34007. doi: 10.1074/jbc.273.51.34000. [DOI] [PubMed] [Google Scholar]
  20. Kataoka M., Yoshiyama K., Matsuura K., Hijiya N., Higuchi Y., Yamamoto S. Structure of the murine CD156 gene, characterization of its promoter, and chromosomal location. J Biol Chem. 1997 Jul 18;272(29):18209–18215. doi: 10.1074/jbc.272.29.18209. [DOI] [PubMed] [Google Scholar]
  21. Kingsley C., Winoto A. Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression. Mol Cell Biol. 1992 Oct;12(10):4251–4261. doi: 10.1128/mcb.12.10.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee B. J., Kang S. G., Hatfield D. Transcription of Xenopus selenocysteine tRNA Ser (formerly designated opal suppressor phosphoserine tRNA) gene is directed by multiple 5'-extragenic regulatory elements. J Biol Chem. 1989 Jun 5;264(16):9696–9702. [PubMed] [Google Scholar]
  23. Lu J., Lee W., Jiang C., Keller E. B. Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem. 1994 Feb 18;269(7):5391–5402. [PubMed] [Google Scholar]
  24. McLaughlin K. J., Kochanowski H., Solter D., Schwarzkopf G., Szabó P. E., Mann J. R. Roles of the imprinted gene Igf2 and paternal duplication of distal chromosome 7 in the perinatal abnormalities of androgenetic mouse chimeras. Development. 1997 Dec;124(23):4897–4904. doi: 10.1242/dev.124.23.4897. [DOI] [PubMed] [Google Scholar]
  25. Meissner W., Wanandi I., Carbon P., Krol A., Seifart K. H. Transcription factors required for the expression of Xenopus laevis selenocysteine tRNA in vitro. Nucleic Acids Res. 1994 Feb 25;22(4):553–559. doi: 10.1093/nar/22.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Myslinski E., Krol A., Carbon P. ZNF76 and ZNF143 are two human homologs of the transcriptional activator Staf. J Biol Chem. 1998 Aug 21;273(34):21998–22006. doi: 10.1074/jbc.273.34.21998. [DOI] [PubMed] [Google Scholar]
  27. Müller C., Yang R., Beck-von-Peccoz L., Idos G., Verbeek W., Koeffler H. P. Cloning of the cyclin A1 genomic structure and characterization of the promoter region. GC boxes are essential for cell cycle-regulated transcription of the cyclin A1 gene. J Biol Chem. 1999 Apr 16;274(16):11220–11228. doi: 10.1074/jbc.274.16.11220. [DOI] [PubMed] [Google Scholar]
  28. Noti J. D. Sp3 mediates transcriptional activation of the leukocyte integrin genes CD11C and CD11B and cooperates with c-Jun to activate CD11C. J Biol Chem. 1997 Sep 19;272(38):24038–24045. doi: 10.1074/jbc.272.38.24038. [DOI] [PubMed] [Google Scholar]
  29. Ragoussis J., Senger G., Mockridge I., Sanseau P., Ruddy S., Dudley K., Sheer D., Trowsdale J. A testis-expressed Zn finger gene (ZNF76) in human 6p21.3 centromeric to the MHC is closely linked to the human homolog of the t-complex gene tcp-11. Genomics. 1992 Nov;14(3):673–679. doi: 10.1016/s0888-7543(05)80167-3. [DOI] [PubMed] [Google Scholar]
  30. Song J., Murakami H., Tsutsui H., Tang X., Matsumura M., Itakura K., Kanazawa I., Sun K., Yokoyama K. K. Genomic organization and expression of a human gene for Myc-associated zinc finger protein (MAZ). J Biol Chem. 1998 Aug 7;273(32):20603–20614. doi: 10.1074/jbc.273.32.20603. [DOI] [PubMed] [Google Scholar]
  31. Stadtman T. C. Selenocysteine. Annu Rev Biochem. 1996;65:83–100. doi: 10.1146/annurev.bi.65.070196.000503. [DOI] [PubMed] [Google Scholar]
  32. Stephens R. M., Schneider T. D. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J Mol Biol. 1992 Dec 20;228(4):1124–1136. doi: 10.1016/0022-2836(92)90320-j. [DOI] [PubMed] [Google Scholar]
  33. Tommerup N., Vissing H. Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics. 1995 May 20;27(2):259–264. doi: 10.1006/geno.1995.1040. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES