Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 15;346(Pt 1):71–76.

Inactivation of cysteine proteases by peptidyl epoxides: characterization of the alkylation sites on the enzyme and the inactivator.

A Albeck 1, S Kliper 1
PMCID: PMC1220824  PMID: 10657241

Abstract

Erythro peptidyl epoxides are selective inactivators of cysteine proteases. The alkylation site, both on the enzyme papain and on the epoxide itself, was characterized. The inactivation of papain with the peptidyl epoxide erythro benzyloxycarbonyl-Phe-Ala-epoxide was followed by total hydrolysis by acid. Mass spectral analysis of the hydrolysate revealed, in addition to the expected amino acids, a unique signal of m/z 209 (MH(+)). Its high-resolution mass spectrum and daughter peak analysis correspond to the product of alkylation on cysteine and the expected fragmentation. A similar MS pattern was obtained for a synthetic model compound corresponding to the expected hydrolysis product. A (13)C NMR analysis of papain inactivated by a specifically (13)C-labelled peptidyl epoxide indicated that the alkylation of the enzyme's cysteine residue occurs on the primary carbon of the epoxide moiety.

Full Text

The Full Text of this article is available as a PDF (125.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albeck A., Kliper S. Mechanism of cysteine protease inactivation by peptidyl epoxides. Biochem J. 1997 Mar 15;322(Pt 3):879–884. doi: 10.1042/bj3220879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brady K., Liang T. C., Abeles R. H. pH dependence of the inhibition of chymotrypsin by a peptidyl trifluoromethyl ketone. Biochemistry. 1989 Nov 14;28(23):9066–9070. doi: 10.1021/bi00449a017. [DOI] [PubMed] [Google Scholar]
  3. De Clercq E. Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. J Med Chem. 1995 Jul 7;38(14):2491–2517. doi: 10.1021/jm00014a001. [DOI] [PubMed] [Google Scholar]
  4. Drenth J., Kalk K. H., Swen H. M. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry. 1976 Aug 24;15(17):3731–3738. doi: 10.1021/bi00662a014. [DOI] [PubMed] [Google Scholar]
  5. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  6. Edwards P. D., Bernstein P. R. Synthetic inhibitors of elastase. Med Res Rev. 1994 Mar;14(2):127–194. doi: 10.1002/med.2610140202. [DOI] [PubMed] [Google Scholar]
  7. Finucane M. D., Hudson E. A., Malthouse J. P. A 13C-n.m.r. investigation of the ionizations within an inhibitor--alpha-chymotrypsin complex. Evidence that both alpha-chymotrypsin and trypsin stabilize a hemiketal oxyanion by similar mechanisms. Biochem J. 1989 Mar 15;258(3):853–859. doi: 10.1042/bj2580853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer G. Trends in protease inhibition. Nat Prod Rep. 1988 Oct;5(5):465–495. doi: 10.1039/np9880500465. [DOI] [PubMed] [Google Scholar]
  9. Hanson J. E., Kaplan A. P., Bartlett P. A. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors. Biochemistry. 1989 Jul 25;28(15):6294–6305. doi: 10.1021/bi00441a022. [DOI] [PubMed] [Google Scholar]
  10. Kaplan A. P., Bartlett P. A. Synthesis and evaluation of an inhibitor of carboxypeptidase A with a Ki value in the femtomolar range. Biochemistry. 1991 Aug 20;30(33):8165–8170. doi: 10.1021/bi00247a011. [DOI] [PubMed] [Google Scholar]
  11. Liang T. C., Abeles R. H. Complex of alpha-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy. Biochemistry. 1987 Dec 1;26(24):7603–7608. doi: 10.1021/bi00398a011. [DOI] [PubMed] [Google Scholar]
  12. Liang T. C., Abeles R. H. Inhibition of papain by nitriles: mechanistic studies using NMR and kinetic measurements. Arch Biochem Biophys. 1987 Feb 1;252(2):626–634. doi: 10.1016/0003-9861(87)90068-3. [DOI] [PubMed] [Google Scholar]
  13. Mackenzie N. E., Malthouse J. P., Scott A. I. Studying enzyme mechanism by 13C nuclear magnetic resonance. Science. 1984 Aug 31;225(4665):883–889. doi: 10.1126/science.6433481. [DOI] [PubMed] [Google Scholar]
  14. Malthouse J. P., Primrose W. U., Mackenzie N. E., Scott A. I. 13C NMR study of the ionizations within a trypsin-chloromethyl ketone inhibitor complex. Biochemistry. 1985 Jul 2;24(14):3478–3487. doi: 10.1021/bi00335a014. [DOI] [PubMed] [Google Scholar]
  15. Markland F. S., Shaw E., Smith E. L. Identification of histidine 64 in the active site of subtilisin. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1440–1447. doi: 10.1073/pnas.61.4.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Plapp B. V. Application of affinity labeling for studying structure and function of enzymes. Methods Enzymol. 1982;87:469–499. doi: 10.1016/s0076-6879(82)87027-4. [DOI] [PubMed] [Google Scholar]
  17. Rauber P., Angliker H., Walker B., Shaw E. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases. Biochem J. 1986 Nov 1;239(3):633–640. doi: 10.1042/bj2390633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SCHOELLMANN G., SHAW E. Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry. 1963 Mar-Apr;2:252–255. doi: 10.1021/bi00902a008. [DOI] [PubMed] [Google Scholar]
  19. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  20. Shaw E. Cysteinyl proteinases and their selective inactivation. Adv Enzymol Relat Areas Mol Biol. 1990;63:271–347. doi: 10.1002/9780470123096.ch5. [DOI] [PubMed] [Google Scholar]
  21. Sluyterman L. A., Wijdenes J. An agarose mercurial column for the separation of mercaptopapain and nonmercaptopapain. Biochim Biophys Acta. 1970 Mar 31;200(3):593–595. doi: 10.1016/0005-2795(70)90122-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES