Abstract
Cellular functions of protein phosphatase-1 (PP1) are determined by regulatory subunits that contain the consensus PP1-binding motif, RVXF. This motif was first identified as the site of phosphorylation by cAMP-dependent protein kinase (PKA) in a skeletal muscle glycogen-targeting subunit (G(M)). We reported previously that a recombinant fusion protein of glutathione S-transferase (GST) and the N-terminal domain of G(M) [GST-G(M)-(1-240)] bound PP1 in a pull down assay, and phosphorylation by PKA prevented PP1 binding. Here we report that substitution of either Ala or Val for Ser-67 in the RVS(67)F motif in GST-G(M)-(1-240) essentially eliminated PP1 binding. This was unexpected because other glycogen-targeting subunits have a Val residue at the position corresponding to Ser-67. In contrast, a mutation of Ser-67 to Thr (S67T) in GST-G(M)(1-240) gave a protein that bound PP1 the same as wild type and was unaffected by PKA phosphorylation. Full length G(M) tagged with the epitope sequence DYKDDDDK (FLAG) expressed in COS7 cells bound PP1 that was recovered by co-immunoprecipitation, but this association was prevented by treatment of the cells with forskolin. By comparison, PP1 binding with FLAG-G(M)(S67T) was not disrupted by forskolin treatment. Neither FLAG-G(M)(S67A) nor FLAG-G(M)(S67V) formed stable complexes with PP1 in COS7 cells. These results emphasise the unique contribution of Ser-67 in PP1 binding to G(M). The constitutive PP1-binding activity shown by G(M)(S67T) opens the way for studying the role of G(M) multisite phosphorylation in hormonal control of glycogen metabolism.
Full Text
The Full Text of this article is available as a PDF (168.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D., MacDougall L. K., Sola M. M., Ikebe M., Cohen P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem. 1992 Dec 15;210(3):1023–1035. doi: 10.1111/j.1432-1033.1992.tb17508.x. [DOI] [PubMed] [Google Scholar]
- Armstrong C. G., Browne G. J., Cohen P., Cohen P. T. PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phosphatase 1. FEBS Lett. 1997 Nov 24;418(1-2):210–214. doi: 10.1016/s0014-5793(97)01385-9. [DOI] [PubMed] [Google Scholar]
- Armstrong C. G., Doherty M. J., Cohen P. T. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J. 1998 Dec 15;336(Pt 3):699–704. doi: 10.1042/bj3360699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beullens M., Van Eynde A., Vulsteke V., Connor J., Shenolikar S., Stalmans W., Bollen M. Molecular determinants of nuclear protein phosphatase-1 regulation by NIPP-1. J Biol Chem. 1999 May 14;274(20):14053–14061. doi: 10.1074/jbc.274.20.14053. [DOI] [PubMed] [Google Scholar]
- Brady M. J., Printen J. A., Mastick C. C., Saltiel A. R. Role of protein targeting to glycogen (PTG) in the regulation of protein phosphatase-1 activity. J Biol Chem. 1997 Aug 8;272(32):20198–20204. doi: 10.1074/jbc.272.32.20198. [DOI] [PubMed] [Google Scholar]
- Campos M., Fadden P., Alms G., Qian Z., Haystead T. A. Identification of protein phosphatase-1-binding proteins by microcystin-biotin affinity chromatography. J Biol Chem. 1996 Nov 8;271(45):28478–28484. doi: 10.1074/jbc.271.45.28478. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Chen M. X., Alessi D. R., Campbell D. G., Shanahan C., Cohen P., Cohen P. T. Molecular cloning of cDNA encoding the 110 kDa and 21 kDa regulatory subunits of smooth muscle protein phosphatase 1M. FEBS Lett. 1994 Dec 12;356(1):51–55. doi: 10.1016/0014-5793(94)01231-8. [DOI] [PubMed] [Google Scholar]
- Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
- Dent P., Lavoinne A., Nakielny S., Caudwell F. B., Watt P., Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature. 1990 Nov 22;348(6299):302–308. doi: 10.1038/348302a0. [DOI] [PubMed] [Google Scholar]
- Doherty M. J., Moorhead G., Morrice N., Cohen P., Cohen P. T. Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett. 1995 Nov 20;375(3):294–298. doi: 10.1016/0014-5793(95)01184-g. [DOI] [PubMed] [Google Scholar]
- Doherty M. J., Young P. R., Cohen P. T. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 1996 Dec 16;399(3):339–343. doi: 10.1016/s0014-5793(96)01357-9. [DOI] [PubMed] [Google Scholar]
- Egloff M. P., Johnson D. F., Moorhead G., Cohen P. T., Cohen P., Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997 Apr 15;16(8):1876–1887. doi: 10.1093/emboj/16.8.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo S., Zhou X., Connor J., Wang B., Shenolikar S. Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry. 1996 Apr 23;35(16):5220–5228. doi: 10.1021/bi952940f. [DOI] [PubMed] [Google Scholar]
- François J. M., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 1992 Jan;11(1):87–96. doi: 10.1002/j.1460-2075.1992.tb05031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helps N. R., Barker H. M., Elledge S. J., Cohen P. T. Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. FEBS Lett. 1995 Dec 27;377(3):295–300. doi: 10.1016/0014-5793(95)01347-4. [DOI] [PubMed] [Google Scholar]
- Hiraga A., Cohen P. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. Eur J Biochem. 1986 Dec 15;161(3):763–769. doi: 10.1111/j.1432-1033.1986.tb10505.x. [DOI] [PubMed] [Google Scholar]
- Hirano K., Erdödi F., Patton J. G., Hartshorne D. J. Interaction of protein phosphatase type 1 with a splicing factor. FEBS Lett. 1996 Jul 1;389(2):191–194. doi: 10.1016/0014-5793(96)00577-7. [DOI] [PubMed] [Google Scholar]
- Hirano K., Hirano M., Hartshorne D. J. Cloning and characterization of a protein phosphatase type 1-binding subunit from smooth muscle similar to the glycogen-binding subunit of liver. Biochim Biophys Acta. 1997 May 23;1339(2):177–180. doi: 10.1016/s0167-4838(97)00048-4. [DOI] [PubMed] [Google Scholar]
- Hirano K., Ito M., Hartshorne D. J. Interaction of the ribosomal protein, L5, with protein phosphatase type 1. J Biol Chem. 1995 Aug 25;270(34):19786–19790. doi: 10.1074/jbc.270.34.19786. [DOI] [PubMed] [Google Scholar]
- Huang H. B., Horiuchi A., Watanabe T., Shih S. R., Tsay H. J., Li H. C., Greengard P., Nairn A. C. Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. J Biol Chem. 1999 Mar 19;274(12):7870–7878. doi: 10.1074/jbc.274.12.7870. [DOI] [PubMed] [Google Scholar]
- Hubbard M. J., Cohen P. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. Eur J Biochem. 1989 Dec 22;186(3):701–709. doi: 10.1111/j.1432-1033.1989.tb15263.x. [DOI] [PubMed] [Google Scholar]
- Hubbard M. J., Cohen P. The glycogen-binding subunit of protein phosphatase-1G from rabbit skeletal muscle. Further characterisation of its structure and glycogen-binding properties. Eur J Biochem. 1989 Mar 15;180(2):457–465. doi: 10.1111/j.1432-1033.1989.tb14668.x. [DOI] [PubMed] [Google Scholar]
- Johnson D. F., Moorhead G., Caudwell F. B., Cohen P., Chen Y. H., Chen M. X., Cohen P. T. Identification of protein-phosphatase-1-binding domains on the glycogen and myofibrillar targetting subunits. Eur J Biochem. 1996 Jul 15;239(2):317–325. doi: 10.1111/j.1432-1033.1996.0317u.x. [DOI] [PubMed] [Google Scholar]
- Kwon Y. G., Huang H. B., Desdouits F., Girault J. A., Greengard P., Nairn A. C. Characterization of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3536–3541. doi: 10.1073/pnas.94.8.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liao H., Li Y., Brautigan D. L., Gundersen G. G. Protein phosphatase 1 is targeted to microtubules by the microtubule-associated protein Tau. J Biol Chem. 1998 Aug 21;273(34):21901–21908. doi: 10.1074/jbc.273.34.21901. [DOI] [PubMed] [Google Scholar]
- Moorhead G., MacKintosh C., Morrice N., Cohen P. Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Lett. 1995 Apr 3;362(2):101–105. doi: 10.1016/0014-5793(95)00197-h. [DOI] [PubMed] [Google Scholar]
- Printen J. A., Brady M. J., Saltiel A. R. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science. 1997 Mar 7;275(5305):1475–1478. doi: 10.1126/science.275.5305.1475. [DOI] [PubMed] [Google Scholar]
- Schillace R. V., Scott J. D. Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr Biol. 1999 Mar 25;9(6):321–324. doi: 10.1016/s0960-9822(99)80141-9. [DOI] [PubMed] [Google Scholar]
- Shenolikar S., Ingebritsen T. S. Protein (serine and threonine) phosphate phosphatases. Methods Enzymol. 1984;107:102–129. doi: 10.1016/0076-6879(84)07007-5. [DOI] [PubMed] [Google Scholar]
- Shenolikar S. Protein serine/threonine phosphatases--new avenues for cell regulation. Annu Rev Cell Biol. 1994;10:55–86. doi: 10.1146/annurev.cb.10.110194.000415. [DOI] [PubMed] [Google Scholar]
- Strålfors P., Hiraga A., Cohen P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem. 1985 Jun 3;149(2):295–303. doi: 10.1111/j.1432-1033.1985.tb08926.x. [DOI] [PubMed] [Google Scholar]
- Tang P. M., Bondor J. A., Swiderek K. M., DePaoli-Roach A. A. Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem. 1991 Aug 25;266(24):15782–15789. [PubMed] [Google Scholar]
- Wera S., Hemmings B. A. Serine/threonine protein phosphatases. Biochem J. 1995 Oct 1;311(Pt 1):17–29. doi: 10.1042/bj3110017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Kleiner U., Brautigan D. L. Protein phosphatase type-1 and glycogen bind to a domain in the skeletal muscle regulatory subunit containing conserved hydrophobic sequence motif. Biochemistry. 1996 Oct 29;35(43):13858–13864. doi: 10.1021/bi961669e. [DOI] [PubMed] [Google Scholar]
- Wu J., Liu J., Thompson I., Oliver C. J., Shenolikar S., Brautigan D. L. A conserved domain for glycogen binding in protein phosphatase-1 targeting subunits. FEBS Lett. 1998 Nov 13;439(1-2):185–191. doi: 10.1016/s0014-5793(98)01371-4. [DOI] [PubMed] [Google Scholar]
- Zhang L., Lee E. Y. Mutational analysis of substrate recognition by protein phosphatase 1. Biochemistry. 1997 Jul 8;36(27):8209–8214. doi: 10.1021/bi9704865. [DOI] [PubMed] [Google Scholar]
- Zhao S., Lee E. Y. A protein phosphatase-1-binding motif identified by the panning of a random peptide display library. J Biol Chem. 1997 Nov 7;272(45):28368–28372. doi: 10.1074/jbc.272.45.28368. [DOI] [PubMed] [Google Scholar]