Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 15;346(Pt 1):133–138.

Endoproteolytic processing of integrin pro-alpha subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7.

J C Lissitzky 1, J Luis 1, J S Munzer 1, S Benjannet 1, F Parat 1, M Chrétien 1, J Marvaldi 1, N G Seidah 1
PMCID: PMC1220832  PMID: 10657249

Abstract

Several integrin alpha subunits undergo post-translational endoproteolytic processing at pairs of basic amino acids that is mediated by the proprotein convertase furin. Here we ask whether other convertase family members can participate in these processing events. We therefore examined the endoproteolysis rate of the integrin subunits pro-alpha5, alpha6 and alphav by recombinant furin, proprotein convertase (PC)5A, paired basic amino acid converting enzyme (PACE)4, PC1, PC2 and PC7 in vitro and/or ex vivo after overexpression in LoVo cells that were deficient in furin activity. We found that 60-fold more PC1 than furin was needed to produce 50% cleavage of pro-alpha subunit substrates in vitro; the defective pro-alpha chain endoproteolysis in LoVo cells was not rescued by overexpression of PC1 or PC2. No endoproteolysis occurred with PC7 either in vitro or ex vivo, although similar primary sequences of the cleavage site are found in integrins and in proteins efficiently processed by PC7, which suggests that a particular conformation of the cleavage site is required for optimal convertase-substrate interactions. In vitro, 50% cleavage of pro-alpha subunits was obtained with one-third of the amount of PC5A and PACE4 than of furin. In LoVo cells, PC5A remained more active than furin, PACE4 activity was quite low, and PC5B, which differs from PC5A by a C-terminal extension containing a transmembrane domain, was very inefficient in processing integrin alpha-subunit precursors. In conclusion, these results indicate that integrin alpha-subunit endoproteolytic processing involves the redundant function of furin and PC5A and to a smaller extent PACE4, but not of PC1, PC2, PC5B or PC7.

Full Text

The Full Text of this article is available as a PDF (182.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. D., Thomas L., Hayflick J. S., Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem. 1993 Nov 25;268(33):24887–24891. [PubMed] [Google Scholar]
  2. Apletalina E., Appel J., Lamango N. S., Houghten R. A., Lindberg I. Identification of inhibitors of prohormone convertases 1 and 2 using a peptide combinatorial library. J Biol Chem. 1998 Oct 9;273(41):26589–26595. doi: 10.1074/jbc.273.41.26589. [DOI] [PubMed] [Google Scholar]
  3. Aplin A. E., Howe A., Alahari S. K., Juliano R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev. 1998 Jun;50(2):197–263. [PubMed] [Google Scholar]
  4. Barbero P., Rovère C., De Bie I., Seidah N., Beaudet A., Kitabgi P. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells. J Biol Chem. 1998 Sep 25;273(39):25339–25346. doi: 10.1074/jbc.273.39.25339. [DOI] [PubMed] [Google Scholar]
  5. Beaubien G., Schäfer M. K., Weihe E., Dong W., Chrétien M., Seidah N. G., Day R. The distinct gene expression of the pro-hormone convertases in the rat heart suggests potential substrates. Cell Tissue Res. 1995 Mar;279(3):539–549. doi: 10.1007/BF00318166. [DOI] [PubMed] [Google Scholar]
  6. Benjannet S., Reudelhuber T., Mercure C., Rondeau N., Chrétien M., Seidah N. G. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J Biol Chem. 1992 Jun 5;267(16):11417–11423. [PubMed] [Google Scholar]
  7. Benjannet S., Rondeau N., Day R., Chrétien M., Seidah N. G. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3564–3568. doi: 10.1073/pnas.88.9.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Benjannet S., Savaria D., Laslop A., Munzer J. S., Chrétien M., Marcinkiewicz M., Seidah N. G. Alpha1-antitrypsin Portland inhibits processing of precursors mediated by proprotein convertases primarily within the constitutive secretory pathway. J Biol Chem. 1997 Oct 17;272(42):26210–26218. doi: 10.1074/jbc.272.42.26210. [DOI] [PubMed] [Google Scholar]
  9. Boudreault A., Gauthier D., Lazure C. Proprotein convertase PC1/3-related peptides are potent slow tight-binding inhibitors of murine PC1/3 and Hfurin. J Biol Chem. 1998 Nov 20;273(47):31574–31580. doi: 10.1074/jbc.273.47.31574. [DOI] [PubMed] [Google Scholar]
  10. Brooks P. C., Clark R. A., Cheresh D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994 Apr 22;264(5158):569–571. doi: 10.1126/science.7512751. [DOI] [PubMed] [Google Scholar]
  11. Brown S. L., Lundgren C. H., Nordt T., Fujii S. Stimulation of migration of human aortic smooth muscle cells by vitronectin: implications for atherosclerosis. Cardiovasc Res. 1994 Dec;28(12):1815–1820. doi: 10.1093/cvr/28.12.1815. [DOI] [PubMed] [Google Scholar]
  12. Campan M., Yoshizumi M., Seidah N. G., Lee M. E., Bianchi C., Haber E. Increased proteolytic processing of protein tyrosine phosphatase mu in confluent vascular endothelial cells: the role of PC5, a member of the subtilisin family. Biochemistry. 1996 Mar 26;35(12):3797–3802. doi: 10.1021/bi952552d. [DOI] [PubMed] [Google Scholar]
  13. De Bie I., Marcinkiewicz M., Malide D., Lazure C., Nakayama K., Bendayan M., Seidah N. G. The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol. 1996 Dec;135(5):1261–1275. doi: 10.1083/jcb.135.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Decroly E., Benjannet S., Savaria D., Seidah N. G. Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160. FEBS Lett. 1997 Mar 17;405(1):68–72. doi: 10.1016/s0014-5793(97)00156-7. [DOI] [PubMed] [Google Scholar]
  15. Decroly E., Wouters S., Di Bello C., Lazure C., Ruysschaert J. M., Seidah N. G. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem. 1996 Nov 29;271(48):30442–30450. doi: 10.1074/jbc.271.48.30442. [DOI] [PubMed] [Google Scholar]
  16. Delwel G. O., Hogervorst F., Sonnenberg A. Cleavage of the alpha6A subunit is essential for activation of the alpha6Abeta1 integrin by phorbol 12-myristate 13-acetate. J Biol Chem. 1996 Mar 29;271(13):7293–7296. doi: 10.1074/jbc.271.13.7293. [DOI] [PubMed] [Google Scholar]
  17. Delwel G. O., Kuikman I., van der Schors R. C., de Melker A. A., Sonnenberg A. Identification of the cleavage sites in the alpha6A integrin subunit: structural requirements for cleavage and functional analysis of the uncleaved alpha6Abeta1 integrin. Biochem J. 1997 May 15;324(Pt 1):263–272. doi: 10.1042/bj3240263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Furuta M., Yano H., Zhou A., Rouillé Y., Holst J. J., Carroll R., Ravazzola M., Orci L., Furuta H., Steiner D. F. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6646–6651. doi: 10.1073/pnas.94.13.6646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horton M. A. The alpha v beta 3 integrin "vitronectin receptor". Int J Biochem Cell Biol. 1997 May;29(5):721–725. doi: 10.1016/s1357-2725(96)00155-0. [DOI] [PubMed] [Google Scholar]
  20. Hoshiga M., Alpers C. E., Smith L. L., Giachelli C. M., Schwartz S. M. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res. 1995 Dec;77(6):1129–1135. doi: 10.1161/01.res.77.6.1129. [DOI] [PubMed] [Google Scholar]
  21. Hubbard F. C., Goodrow T. L., Liu S. C., Brilliant M. H., Basset P., Mains R. E., Klein-Szanto A. J. Expression of PACE4 in chemically induced carcinomas is associated with spindle cell tumor conversion and increased invasive ability. Cancer Res. 1997 Dec 1;57(23):5226–5231. [PubMed] [Google Scholar]
  22. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  23. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  24. Jean F., Stella K., Thomas L., Liu G., Xiang Y., Reason A. J., Thomas G. alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7293–7298. doi: 10.1073/pnas.95.13.7293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones B. G., Thomas L., Molloy S. S., Thulin C. D., Fry M. D., Walsh K. A., Thomas G. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J. 1995 Dec 1;14(23):5869–5883. doi: 10.1002/j.1460-2075.1995.tb00275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Komada M., Hatsuzawa K., Shibamoto S., Ito F., Nakayama K., Kitamura N. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 1993 Aug 9;328(1-2):25–29. doi: 10.1016/0014-5793(93)80958-w. [DOI] [PubMed] [Google Scholar]
  27. Lehmann M., André F., Bellan C., Remacle-Bonnet M., Garrouste F., Parat F., Lissitsky J. C., Marvaldi J., Pommier G. Deficient processing and activity of type I insulin-like growth factor receptor in the furin-deficient LoVo-C5 cells. Endocrinology. 1998 Sep;139(9):3763–3771. doi: 10.1210/endo.139.9.6184. [DOI] [PubMed] [Google Scholar]
  28. Lehmann M., Rabenandrasana C., Tamura R., Lissitzky J. C., Quaranta V., Pichon J., Marvaldi J. A monoclonal antibody inhibits adhesion to fibronectin and vitronectin of a colon carcinoma cell line and recognizes the integrins alpha v beta 3, alpha v beta 5, and alpha v beta 6. Cancer Res. 1994 Apr 15;54(8):2102–2107. [PubMed] [Google Scholar]
  29. Lehmann M., Rigot V., Seidah N. G., Marvaldi J., Lissitzky J. C. Lack of integrin alpha-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo. Biochem J. 1996 Aug 1;317(Pt 3):803–809. doi: 10.1042/bj3170803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Logeat F., Bessia C., Brou C., LeBail O., Jarriault S., Seidah N. G., Israël A. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8108–8112. doi: 10.1073/pnas.95.14.8108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lönnqvist L., Reinhardt D., Sakai L., Peltonen L. Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet. 1998 Dec;7(13):2039–2044. doi: 10.1093/hmg/7.13.2039. [DOI] [PubMed] [Google Scholar]
  32. Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Munzer J. S., Basak A., Zhong M., Mamarbachi A., Hamelin J., Savaria D., Lazure C., Hendy G. N., Benjannet S., Chrétien M. In vitro characterization of the novel proprotein convertase PC7. J Biol Chem. 1997 Aug 8;272(32):19672–19681. doi: 10.1074/jbc.272.32.19672. [DOI] [PubMed] [Google Scholar]
  34. Nachtigal M. W., Ingraham H. A. Bioactivation of Müllerian inhibiting substance during gonadal development by a kex2/subtilisin-like endoprotease. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7711–7716. doi: 10.1073/pnas.93.15.7711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Posthaus H., Dubois C. M., Laprise M. H., Grondin F., Suter M. M., Müller E. Proprotein cleavage of E-cadherin by furin in baculovirus over-expression system: potential role of other convertases in mammalian cells. FEBS Lett. 1998 Nov 6;438(3):306–310. doi: 10.1016/s0014-5793(98)01330-1. [DOI] [PubMed] [Google Scholar]
  36. Rovère C., Luis J., Lissitzky J. C., Basak A., Marvaldi J., Chrétien M., Seidah N. G. The RGD motif and the C-terminal segment of proprotein convertase 1 are critical for its cellular trafficking but not for its intracellular binding to integrin alpha5beta1. J Biol Chem. 1999 Apr 30;274(18):12461–12467. doi: 10.1074/jbc.274.18.12461. [DOI] [PubMed] [Google Scholar]
  37. Santavicca M., Noel A., Angliker H., Stoll I., Segain J. P., Anglard P., Chretien M., Seidah N., Basset P. Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases. Biochem J. 1996 May 1;315(Pt 3):953–958. doi: 10.1042/bj3150953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schäcke H., Schumann H., Hammami-Hauasli N., Raghunath M., Bruckner-Tuderman L. Two forms of collagen XVII in keratinocytes. A full-length transmembrane protein and a soluble ectodomain. J Biol Chem. 1998 Oct 2;273(40):25937–25943. doi: 10.1074/jbc.273.40.25937. [DOI] [PubMed] [Google Scholar]
  39. Schäfer W., Stroh A., Berghöfer S., Seiler J., Vey M., Kruse M. L., Kern H. F., Klenk H. D., Garten W. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J. 1995 Jun 1;14(11):2424–2435. doi: 10.1002/j.1460-2075.1995.tb07240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Seidah N. G., Benjannet S., Pareek S., Savaria D., Hamelin J., Goulet B., Laliberte J., Lazure C., Chrétien M., Murphy R. A. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J. 1996 Mar 15;314(Pt 3):951–960. doi: 10.1042/bj3140951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
  42. Seidah N. G., Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997 Oct;8(5):602–607. doi: 10.1016/s0958-1669(97)80036-5. [DOI] [PubMed] [Google Scholar]
  43. Seidah N. G., Day R., Marcinkiewicz M., Chrétien M. Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci. 1998 May 15;839:9–24. doi: 10.1111/j.1749-6632.1998.tb10727.x. [DOI] [PubMed] [Google Scholar]
  44. Takahashi S., Nakagawa T., Banno T., Watanabe T., Murakami K., Nakayama K. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem. 1995 Nov 24;270(47):28397–28401. doi: 10.1074/jbc.270.47.28397. [DOI] [PubMed] [Google Scholar]
  45. Takahashi S., Nakagawa T., Kasai K., Banno T., Duguay S. J., Van de Ven W. J., Murakami K., Nakayama K. A second mutant allele of furin in the processing-incompetent cell line, LoVo. Evidence for involvement of the homo B domain in autocatalytic activation. J Biol Chem. 1995 Nov 3;270(44):26565–26569. doi: 10.1074/jbc.270.44.26565. [DOI] [PubMed] [Google Scholar]
  46. Van Rompaey L., Ayoubi T., Van De Ven W., Marynen P. Inhibition of intracellular proteolytic processing of soluble proproteins by an engineered alpha 2-macroglobulin containing a furin recognition sequence in the bait region. Biochem J. 1997 Sep 1;326(Pt 2):507–514. doi: 10.1042/bj3260507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vollenweider F., Benjannet S., Decroly E., Savaria D., Lazure C., Thomas G., Chrétien M., Seidah N. G. Comparative cellular processing of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp160 by the mammalian subtilisin/kexin-like convertases. Biochem J. 1996 Mar 1;314(Pt 2):521–532. doi: 10.1042/bj3140521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wouters S., Leruth M., Decroly E., Vandenbranden M., Creemers J. W., van de Loo J. W., Ruysschaert J. M., Courtoy P. J. Furin and proprotein convertase 7 (PC7)/lymphoma PC endogenously expressed in rat liver can be resolved into distinct post-Golgi compartments. Biochem J. 1998 Dec 1;336(Pt 2):311–316. doi: 10.1042/bj3360311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhong M., Munzer J. S., Basak A., Benjannet S., Mowla S. J., Decroly E., Chrétien M., Seidah N. G. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J Biol Chem. 1999 Nov 26;274(48):33913–33920. doi: 10.1074/jbc.274.48.33913. [DOI] [PubMed] [Google Scholar]
  50. van de Loo J. W., Creemers J. W., Bright N. A., Young B. D., Roebroek A. J., Van de Ven W. J. Biosynthesis, distinct post-translational modifications, and functional characterization of lymphoma proprotein convertase. J Biol Chem. 1997 Oct 24;272(43):27116–27123. doi: 10.1074/jbc.272.43.27116. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES