Abstract
Crystal structures of human pancreatic alpha-amylase (HPA) in complex with naturally occurring inhibitors have been solved. The tetrasaccharide acarbose and a pseudo-pentasaccharide of the trestatin family produced identical continuous electron densities corresponding to a pentasaccharide species, spanning the -3 to +2 subsites of the enzyme, presumably resulting from transglycosylation. Binding of the acarviosine core linked to a glucose residue at subsites -1 to +2 appears to be a critical part of the interaction process between alpha-amylases and trestatin-derived inhibitors. Two crystal forms, obtained at different values of pH, for the complex of HPA with the protein inhibitor from Phaseolus vulgaris (alpha-amylase inhibitor) have been solved. The flexible loop typical of the mammalian alpha-amylases was shown to exist in two different conformations, suggesting that loop closure is pH-sensitive. Structural information is provided for the important inhibitor residue, Arg-74, which has not been observed previously in structural analyses.
Full Text
The Full Text of this article is available as a PDF (286.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bompard-Gilles C., Rousseau P., Rougé P., Payan F. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Structure. 1996 Dec 15;4(12):1441–1452. doi: 10.1016/s0969-2126(96)00151-7. [DOI] [PubMed] [Google Scholar]
- Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brzozowski A. M., Davies G. J. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry. 1997 Sep 9;36(36):10837–10845. doi: 10.1021/bi970539i. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Dauter Z., Dauter M., Brzozowski A. M., Christensen S., Borchert T. V., Beier L., Wilson K. S., Davies G. J. X-ray structure of Novamyl, the five-domain "maltogenic" alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7A resolution. Biochemistry. 1999 Jun 29;38(26):8385–8392. doi: 10.1021/bi990256l. [DOI] [PubMed] [Google Scholar]
- Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferey-Roux G., Perrier J., Forest E., Marchis-Mouren G., Puigserver A., Santimone M. The human pancreatic alpha-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. Biochim Biophys Acta. 1998 Oct 14;1388(1):10–20. doi: 10.1016/s0167-4838(98)00147-2. [DOI] [PubMed] [Google Scholar]
- Gilles C., Astier J. P., Marchis-Mouren G., Cambillau C., Payan F. Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur J Biochem. 1996 Jun 1;238(2):561–569. doi: 10.1111/j.1432-1033.1996.0561z.x. [DOI] [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larson S. B., Greenwood A., Cascio D., Day J., McPherson A. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1994 Feb 4;235(5):1560–1584. doi: 10.1006/jmbi.1994.1107. [DOI] [PubMed] [Google Scholar]
- Le Berre-Anton V., Bompard-Gilles C., Payan F., Rougé P. Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta. 1997 Nov 14;1343(1):31–40. doi: 10.1016/s0167-4838(97)00100-3. [DOI] [PubMed] [Google Scholar]
- Machius M., Vértesy L., Huber R., Wiegand G. Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics. J Mol Biol. 1996 Jul 19;260(3):409–421. doi: 10.1006/jmbi.1996.0410. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Mirkov T. E., Evans S. V., Wahlstrom J., Gomez L., Young N. M., Chrispeels M. J. Location of the active site of the bean alpha-amylase inhibitor and involvement of a Trp, Arg, Tyr triad. Glycobiology. 1995 Feb;5(1):45–50. doi: 10.1093/glycob/5.1.45. [DOI] [PubMed] [Google Scholar]
- Nahoum V., Farisei F., Le-Berre-Anton V., Egloff M. P., Rougé P., Poerio E., Payan F. A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr D Biol Crystallogr. 1999 Jan 1;55(Pt 1):360–362. doi: 10.1107/S0907444998010701. [DOI] [PubMed] [Google Scholar]
- Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
- Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
- Rydberg E. H., Sidhu G., Vo H. C., Hewitt J., Côte H. C., Wang Y., Numao S., MacGillivray R. T., Overall C. M., Brayer G. D. Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichia pastoris. Protein Sci. 1999 Mar;8(3):635–643. doi: 10.1110/ps.8.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt D. D., Frommer W., Junge B., Müller L., Wingender W., Truscheit E., Schäfer D. alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin. Naturwissenschaften. 1977 Oct;64(10):535–536. doi: 10.1007/BF00483561. [DOI] [PubMed] [Google Scholar]
- Strokopytov B., Knegtel R. M., Penninga D., Rozeboom H. J., Kalk K. H., Dijkhuizen L., Dijkstra B. W. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity. Biochemistry. 1996 Apr 2;35(13):4241–4249. doi: 10.1021/bi952339h. [DOI] [PubMed] [Google Scholar]
- Wiegand G., Epp O., Huber R. The crystal structure of porcine pancreatic alpha-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol. 1995 Mar 17;247(1):99–110. doi: 10.1006/jmbi.1994.0125. [DOI] [PubMed] [Google Scholar]