Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):275–280.

Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms.

S Vanlingen 1, H Sipma 1, P De Smet 1, G Callewaert 1, L Missiaen 1, H De Smedt 1, J B Parys 1
PMCID: PMC1220851  PMID: 10677344

Abstract

We have expressed the N-terminal 581 amino acids of type 1 myo-inositol 1,4,5-trisphosphate receptor (IP(3)R1), IP(3)R2 and IP(3)R3 as recombinant proteins [ligand-binding site 1 (lbs-1), lbs-2, lbs-3] in the soluble fraction of Escherichia coli. These recombinant proteins contain the complete IP(3)-binding domain and bound IP(3) and adenophostin A with high affinity. Ca(2+) and calmodulin were previously found to maximally inhibit IP(3) binding to lbs-1 by 42+/-6 and 43+/-6% respectively, and with an IC(50) of approx. 200 nM and 3 microM respectively [Sipma, De Smet, Sienaert, Vanlingen, Missiaen, Parys and De Smedt (1999) J. Biol. Chem. 274, 12157-12562]. We now report that Ca(2+) inhibited IP(3) binding to lbs-3 with an IC(50) of approx. 700 nM (37+/-4% inhibition at 5 microM Ca(2+)), while IP(3) binding to lbs-2 was not affected by increasing [Ca(2+)] from 100 nM to 25 microM. Calmodulin (10 microM) inhibited IP(3) binding to lbs-3 by 37+/-4%, while IP(3) binding to lbs-2 was inhibited by only 11+/-2%. The inhibition of IP(3) binding to lbs-3 by calmodulin was dose-dependent (IC(50) approximately 2 microM). We conclude that the IP(3)-binding domains of the various IP(3)R isoforms differ in binding characteristics for IP(3) and adenophostin A, and are differentially modulated by Ca(2+) and calmodulin, suggesting that the various IP(3)R isoforms can have different intracellular functions.

Full Text

The Full Text of this article is available as a PDF (148.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondel O., Bell G. I., Moody M., Miller R. J., Gibbons S. J. Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells. J Biol Chem. 1994 Nov 4;269(44):27167–27170. [PubMed] [Google Scholar]
  2. Cardy T. J., Taylor C. W. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J. 1998 Sep 1;334(Pt 2):447–455. doi: 10.1042/bj3340447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cardy T. J., Traynor D., Taylor C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J. 1997 Dec 15;328(Pt 3):785–793. doi: 10.1042/bj3280785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coquil J. F., Picard L., Mauger J. P. Regulation of cerebellar Ins(1,4,5)P3 receptor by interaction between Ins(1,4,5)P3 and Ca2+. Biochem J. 1999 Aug 1;341(Pt 3):697–704. doi: 10.1042/0264-6021:3410697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Danoff S. K., Supattapone S., Snyder S. H. Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem J. 1988 Sep 15;254(3):701–705. doi: 10.1042/bj2540701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Smedt H., Missiaen L., Parys J. B., Bootman M. D., Mertens L., Van Den Bosch L., Casteels R. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. [PubMed] [Google Scholar]
  7. De Smedt H., Missiaen L., Parys J. B., Henning R. H., Sienaert I., Vanlingen S., Gijsens A., Himpens B., Casteels R. Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J. 1997 Mar 1;322(Pt 2):575–583. doi: 10.1042/bj3220575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998 Nov 5;396(6706):81–84. doi: 10.1038/23954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirota J., Michikawa T., Miyawaki A., Takahashi M., Tanzawa K., Okura I., Furuichi T., Mikoshiba K. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 1995 Jul 17;368(2):248–252. doi: 10.1016/0014-5793(95)00659-w. [DOI] [PubMed] [Google Scholar]
  10. Joseph S. K., Rice H. L., Williamson J. R. The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem J. 1989 Feb 15;258(1):261–265. doi: 10.1042/bj2580261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joseph S. K., Ryan S. V. Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J Biol Chem. 1993 Nov 5;268(31):23059–23065. [PubMed] [Google Scholar]
  12. Marchant J. S., Beecroft M. D., Riley A. M., Jenkins D. J., Marwood R. D., Taylor C. W., Potter B. V. Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Biochemistry. 1997 Oct 21;36(42):12780–12790. doi: 10.1021/bi971397v. [DOI] [PubMed] [Google Scholar]
  13. Marshall I. C., Taylor C. W. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J. 1994 Jul 15;301(Pt 2):591–598. doi: 10.1042/bj3010591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Missiaen L., Parys J. B., Sienaert I., Maes K., Kunzelmann K., Takahashi M., Tanzawa K., De Smedt H. Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem. 1998 Apr 10;273(15):8983–8986. doi: 10.1074/jbc.273.15.8983. [DOI] [PubMed] [Google Scholar]
  15. Miyakawa T., Maeda A., Yamazawa T., Hirose K., Kurosaki T., Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 1999 Mar 1;18(5):1303–1308. doi: 10.1093/emboj/18.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mohr F. C., Hershey P. E., Zimányi I., Pessah I. N. Regulation of inositol 1,4,5-trisphosphate receptors in rat basophilic leukemia cells. I. Multiple conformational states of the receptor in a microsomal preparation. Biochim Biophys Acta. 1993 Apr 8;1147(1):105–114. doi: 10.1016/0005-2736(93)90320-y. [DOI] [PubMed] [Google Scholar]
  17. Moraru I. I., Kaftan E. J., Ehrlich B. E., Watras J. Regulation of type 1 inositol 1,4,5-trisphosphate-gated calcium channels by InsP3 and calcium: Simulation of single channel kinetics based on ligand binding and electrophysiological analysis. J Gen Physiol. 1999 Jun;113(6):837–849. doi: 10.1085/jgp.113.6.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
  19. Parys J. B., de Smedt H., Missiaen L., Bootman M. D., Sienaert I., Casteels R. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium. 1995 Apr;17(4):239–249. doi: 10.1016/0143-4160(95)90070-5. [DOI] [PubMed] [Google Scholar]
  20. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  21. Patel S., Morris S. A., Adkins C. E., O'Beirne G., Taylor C. W. Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11627–11632. doi: 10.1073/pnas.94.21.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Picard L., Coquil J. F., Mauger J. P. Multiple mechanisms of regulation of the inositol 1,4,5-trisphosphate receptor by calcium. Cell Calcium. 1998 May;23(5):339–348. doi: 10.1016/s0143-4160(98)90029-x. [DOI] [PubMed] [Google Scholar]
  23. Pietri F., Hilly M., Mauger J. P. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Oct 15;265(29):17478–17485. [PubMed] [Google Scholar]
  24. Ramos-Franco J., Fill M., Mignery G. A. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys J. 1998 Aug;75(2):834–839. doi: 10.1016/S0006-3495(98)77572-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sienaert I., Huyghe S., Parys J. B., Malfait M., Kunzelmann K., De Smedt H., Verleden G. M., Missiaen L. ATP-induced Ca2+ signals in bronchial epithelial cells. Pflugers Arch. 1998 Jun;436(1):40–48. doi: 10.1007/s004240050602. [DOI] [PubMed] [Google Scholar]
  26. Sienaert I., Missiaen L., De Smedt H., Parys J. B., Sipma H., Casteels R. Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1997 Oct 10;272(41):25899–25906. doi: 10.1074/jbc.272.41.25899. [DOI] [PubMed] [Google Scholar]
  27. Sipma H., De Smet P., Sienaert I., Vanlingen S., Missiaen L., Parys J. B., De Smedt H. Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin. J Biol Chem. 1999 Apr 23;274(17):12157–12162. doi: 10.1074/jbc.274.17.12157. [DOI] [PubMed] [Google Scholar]
  28. Sipma H., Deelman L., Smedt H. D., Missiaen L., Parys J. B., Vanlingen S., Henning R. H., Casteels R. Agonist-induced down-regulation of type 1 and type 3 inositol 1,4,5-trisphosphate receptors in A7r5 and DDT1 MF-2 smooth muscle cells. Cell Calcium. 1998 Jan;23(1):11–21. doi: 10.1016/s0143-4160(98)90070-7. [DOI] [PubMed] [Google Scholar]
  29. Südhof T. C., Newton C. L., Archer B. T., 3rd, Ushkaryov Y. A., Mignery G. A. Structure of a novel InsP3 receptor. EMBO J. 1991 Nov;10(11):3199–3206. doi: 10.1002/j.1460-2075.1991.tb04882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takahashi M., Tanzawa K., Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Jan 7;269(1):369–372. [PubMed] [Google Scholar]
  31. Taylor C. W. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):19–33. doi: 10.1016/s0005-2760(98)00122-2. [DOI] [PubMed] [Google Scholar]
  32. Vanlingen S., Parys J. B., Missiaen L., De Smedt H., Wuytack F., Casteels R. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBL-2H3 rat basophilic leukemia cells. Cell Calcium. 1997 Dec;22(6):475–486. doi: 10.1016/s0143-4160(97)90075-0. [DOI] [PubMed] [Google Scholar]
  33. Vanlingen S., Sipma H., Missiaen L., De Smedt H., De Smet P., Casteels R., Parys J. B. Modulation of type 1, 2 and 3 inositol 1,4,5-trisphosphate receptors by cyclic ADP-ribose and thimerosal. Cell Calcium. 1999 Feb;25(2):107–114. doi: 10.1054/ceca.1998.0010. [DOI] [PubMed] [Google Scholar]
  34. Watras J., Moraru I., Costa D. J., Kindman L. A. Two inositol 1,4,5-trisphosphate binding sites in rat basophilic leukemia cells: relationship between receptor occupancy and calcium release. Biochemistry. 1994 Nov 29;33(47):14359–14367. doi: 10.1021/bi00251a050. [DOI] [PubMed] [Google Scholar]
  35. Wojcikiewicz R. J., Luo S. G. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol. 1998 Apr;53(4):656–662. doi: 10.1124/mol.53.4.656. [DOI] [PubMed] [Google Scholar]
  36. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  37. Yamada M., Miyawaki A., Saito K., Nakajima T., Yamamoto-Hino M., Ryo Y., Furuichi T., Mikoshiba K. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J. 1995 May 15;308(Pt 1):83–88. doi: 10.1042/bj3080083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yoneshima H., Miyawaki A., Michikawa T., Furuichi T., Mikoshiba K. Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem J. 1997 Mar 1;322(Pt 2):591–596. doi: 10.1042/bj3220591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yoshikawa F., Morita M., Monkawa T., Michikawa T., Furuichi T., Mikoshiba K. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996 Jul 26;271(30):18277–18284. doi: 10.1074/jbc.271.30.18277. [DOI] [PubMed] [Google Scholar]
  40. Yoshikawa F., Uchiyama T., Iwasaki H., Tomomori-Satoh C., Tanaka T., Furuichi T., Mikoshiba K. High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun. 1999 Apr 21;257(3):792–797. doi: 10.1006/bbrc.1999.0498. [DOI] [PubMed] [Google Scholar]
  41. Zhang B. X., Zhao H., Muallem S. Ca(2+)-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation. J Biol Chem. 1993 May 25;268(15):10997–11001. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES