Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):337–343. doi: 10.1042/bj3460337

Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor alpha and cAMP.

T Rahn Landström 1, J Mei 1, M Karlsson 1, V Manganiello 1, E Degerman 1
PMCID: PMC1220858  PMID: 10677351

Abstract

We have used murine 3T3-L1 cells, which differentiate in culture and acquire morphological and biochemical features of mature adipocytes, as a model for studying the expression of cyclic-nucleotide phosphodiesterase (PDE) 3B activity, protein and mRNA during differentiation and during long-term treatment of the cells with tumour necrosis factor alpha (TNF-alpha), a cytokine associated with insulin resistance, and a cAMP analogue, N(6),2'-O-dibutyryl cAMP (dbcAMP). PDE3B activity, protein and mRNA could be detected 4 days after the initiation of differentiation of 3T3-L1 preadipocytes. Treatment of 3T3-L1 adipocytes with 10 ng/ml TNF-alpha for 24 h produced a maximal (50%) decrease in PDE3B activity, protein and mRNA, which was well correlated with both activation of protein kinase A (PKA) and stimulation of lipolysis, presumably reflecting an increase in intracellular cAMP concentration. To investigate the effect of cAMP on PDE3B we treated 3T3-L1 adipocytes with dbcAMP. After 4 h with 0.5 mM dbcAMP, PDE3B activity was decreased by 80%, which was also correlated with a decrease in PDE3B protein and mRNA. This effect was abolished in the presence of N-[2-(bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide] (H-89), a specific PKA inhibitor. We conclude that the lipolytic effect of TNF-alpha involves the down-regulation of PDE3B, which is associated with increased activation of PKA, presumably owing to increased levels of cAMP. In addition, the PKA activation induced by dbcAMP resulted in the down-regulation of PDE3B. These results, which suggest that PDE3B is a novel target for long-term regulation by TNF-alpha and cAMP, could contribute to the understanding of the mechanisms of insulin resistance.

Full Text

The Full Text of this article is available as a PDF (204.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butcher R. W., Baird C. E., Sutherland E. W. Effects of lipolytic and antilipolytic substances on adenosine 3',5'-monophosphate levels in isolated fat cells. J Biol Chem. 1968 Apr 25;243(8):1705–1712. [PubMed] [Google Scholar]
  2. Chan Y. L., Gutell R., Noller H. F., Wool I. G. The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J Biol Chem. 1984 Jan 10;259(1):224–230. [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  5. Degerman E., Belfrage P., Manganiello V. C. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem. 1997 Mar 14;272(11):6823–6826. doi: 10.1074/jbc.272.11.6823. [DOI] [PubMed] [Google Scholar]
  6. Degerman E., Landström T. R., Wijkander J., Holst L. S., Ahmad F., Belfrage P., Manganiello V. Phosphorylation and activation of hormone-sensitive adipocyte phosphodiesterase type 3B. Methods. 1998 Jan;14(1):43–53. doi: 10.1006/meth.1997.0564. [DOI] [PubMed] [Google Scholar]
  7. Degerman E., Smith C. J., Tornqvist H., Vasta V., Belfrage P., Manganiello V. C. Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci U S A. 1990 Jan;87(2):533–537. doi: 10.1073/pnas.87.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Egan J. J., Greenberg A. S., Chang M. K., Wek S. A., Moos M. C., Jr, Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8537–8541. doi: 10.1073/pnas.89.18.8537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elks M. L., Manganiello V. C. Effects of thyroid hormone on regulation of lipolysis and adenosine 3',5'-monophosphate metabolism in 3T3-L1 adipocytes. Endocrinology. 1985 Sep;117(3):947–953. doi: 10.1210/endo-117-3-947. [DOI] [PubMed] [Google Scholar]
  10. Engfeldt P., Arner P., Bolinder J., Ostman J. Phosphodiesterase activity in human subcutaneous adipose tissue in insulin- and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1982 Nov;55(5):983–988. doi: 10.1210/jcem-55-5-983. [DOI] [PubMed] [Google Scholar]
  11. Gasic S., Tian B., Green A. Tumor necrosis factor alpha stimulates lipolysis in adipocytes by decreasing Gi protein concentrations. J Biol Chem. 1999 Mar 5;274(10):6770–6775. doi: 10.1074/jbc.274.10.6770. [DOI] [PubMed] [Google Scholar]
  12. Goswami A., Rosenberg I. N. Thyroid hormone modulation of epinephrine-induced lipolysis in rat adipocytes: a possible role of calcium. Endocrinology. 1978 Dec;103(6):2223–2233. doi: 10.1210/endo-103-6-2223. [DOI] [PubMed] [Google Scholar]
  13. Green A., Dobias S. B., Walters D. J., Brasier A. R. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology. 1994 Jun;134(6):2581–2588. doi: 10.1210/endo.134.6.8194485. [DOI] [PubMed] [Google Scholar]
  14. Green H., Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975 May;5(1):19–27. doi: 10.1016/0092-8674(75)90087-2. [DOI] [PubMed] [Google Scholar]
  15. Greenberg A. S., Egan J. J., Wek S. A., Garty N. B., Blanchette-Mackie E. J., Londos C. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem. 1991 Jun 15;266(17):11341–11346. [PubMed] [Google Scholar]
  16. Gregoire F. M., Smas C. M., Sul H. S. Understanding adipocyte differentiation. Physiol Rev. 1998 Jul;78(3):783–809. doi: 10.1152/physrev.1998.78.3.783. [DOI] [PubMed] [Google Scholar]
  17. Hadri K. E., Courtalon A., Gauthereau X., Chambaut-Guérin A. M., Pairault J., Fève B. Differential regulation by tumor necrosis factor-alpha of beta1-, beta2-, and beta3-adrenoreceptor gene expression in 3T3-F442A adipocytes. J Biol Chem. 1997 Sep 26;272(39):24514–24521. doi: 10.1074/jbc.272.39.24514. [DOI] [PubMed] [Google Scholar]
  18. Hofmann C., Lorenz K., Braithwaite S. S., Colca J. R., Palazuk B. J., Hotamisligil G. S., Spiegelman B. M. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology. 1994 Jan;134(1):264–270. doi: 10.1210/endo.134.1.8275942. [DOI] [PubMed] [Google Scholar]
  19. Honnor R. C., Dhillon G. S., Londos C. cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation, and predictability in behavior. J Biol Chem. 1985 Dec 5;260(28):15122–15129. [PubMed] [Google Scholar]
  20. Hotamisligil G. S., Arner P., Caro J. F., Atkinson R. L., Spiegelman B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995 May;95(5):2409–2415. doi: 10.1172/JCI117936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hotamisligil G. S., Shargill N. S., Spiegelman B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993 Jan 1;259(5091):87–91. doi: 10.1126/science.7678183. [DOI] [PubMed] [Google Scholar]
  22. Kern P. A., Saghizadeh M., Ong J. M., Bosch R. J., Deem R., Simsolo R. B. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995 May;95(5):2111–2119. doi: 10.1172/JCI117899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lafontan M., Bousquet-Melou A., Galitzky J., Barbe P., Carpéné C., Langin D., Berlan M., Valet P., Castan I., Bouloumié A. Adrenergic receptors and fat cells: differential recruitment by physiological amines and homologous regulation. Obes Res. 1995 Nov;3 (Suppl 4):507S–514S. doi: 10.1002/j.1550-8528.1995.tb00220.x. [DOI] [PubMed] [Google Scholar]
  25. Liu H., Maurice D. H. Expression of cyclic GMP-inhibited phosphodiesterases 3A and 3B (PDE3A and PDE3B) in rat tissues: differential subcellular localization and regulated expression by cyclic AMP. Br J Pharmacol. 1998 Dec;125(7):1501–1510. doi: 10.1038/sj.bjp.0702227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manganiello V. C., Murata T., Taira M., Belfrage P., Degerman E. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch Biochem Biophys. 1995 Sep 10;322(1):1–13. doi: 10.1006/abbi.1995.1429. [DOI] [PubMed] [Google Scholar]
  27. Nagaoka T., Shirakawa T., Balon T. W., Russell J. C., Fujita-Yamaguchi Y. Cyclic nucleotide phosphodiesterase 3 expression in vivo: evidence for tissue-specific expression of phosphodiesterase 3A or 3B mRNA and activity in the aorta and adipose tissue of atherosclerosis-prone insulin-resistant rats. Diabetes. 1998 Jul;47(7):1135–1144. doi: 10.2337/diabetes.47.7.1135. [DOI] [PubMed] [Google Scholar]
  28. Osterlund T., Danielsson B., Degerman E., Contreras J. A., Edgren G., Davis R. C., Schotz M. C., Holm C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem J. 1996 Oct 15;319(Pt 2):411–420. doi: 10.1042/bj3190411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oyen O., Sandberg M., Eskild W., Levy F. O., Knutsen G., Beebe S., Hansson V., Jahnsen T. Differential regulation of messenger ribonucleic acids for specific subunits of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase by cAMP in rat Sertoli cells. Endocrinology. 1988 Jun;122(6):2658–2666. doi: 10.1210/endo-122-6-2658. [DOI] [PubMed] [Google Scholar]
  30. Pareja A., Tinahones F. J., Soriguer F. J., Monzón A., Esteva de Antonio I., García-Arnes J., Olveira G., Ruiz de Adana M. S. Unsaturated fatty acids alter the insulin secretion response of the islets of Langerhans in vitro. Diabetes Res Clin Pract. 1997 Dec;38(3):143–149. doi: 10.1016/s0168-8227(97)00103-4. [DOI] [PubMed] [Google Scholar]
  31. Plée-Gautier E., Grober J., Duplus E., Langin D., Forest C. Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes. Biochem J. 1996 Sep 15;318(Pt 3):1057–1063. doi: 10.1042/bj3181057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  33. Rahn T., Ridderstråle M., Tornqvist H., Manganiello V., Fredrikson G., Belfrage P., Degerman E. Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes. Studies using the selective inhibitor wortmannin. FEBS Lett. 1994 Aug 22;350(2-3):314–318. doi: 10.1016/0014-5793(94)00797-7. [DOI] [PubMed] [Google Scholar]
  34. Rascón A., Degerman E., Taira M., Meacci E., Smith C. J., Manganiello V., Belfrage P., Tornqvist H. Identification of the phosphorylation site in vitro for cAMP-dependent protein kinase on the rat adipocyte cGMP-inhibited cAMP phosphodiesterase. J Biol Chem. 1994 Apr 22;269(16):11962–11966. [PubMed] [Google Scholar]
  35. Rose R. J., Liu H., Palmer D., Maurice D. H. Cyclic AMP-mediated regulation of vascular smooth muscle cell cyclic AMP phosphodiesterase activity. Br J Pharmacol. 1997 Sep;122(2):233–240. doi: 10.1038/sj.bjp.0701376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosenbaum S. E., Greenberg A. S. The short- and long-term effects of tumor necrosis factor-alpha and BRL 49653 on peroxisome proliferator-activated receptor (PPAR)gamma2 gene expression and other adipocyte genes. Mol Endocrinol. 1998 Aug;12(8):1150–1160. doi: 10.1210/mend.12.8.0151. [DOI] [PubMed] [Google Scholar]
  37. Seybold J., Newton R., Wright L., Finney P. A., Suttorp N., Barnes P. J., Adcock I. M., Giembycz M. A. Induction of phosphodiesterases 3B, 4A4, 4D1, 4D2, and 4D3 in Jurkat T-cells and in human peripheral blood T-lymphocytes by 8-bromo-cAMP and Gs-coupled receptor agonists. Potential role in beta2-adrenoreceptor desensitization. J Biol Chem. 1998 Aug 7;273(32):20575–20588. doi: 10.1074/jbc.273.32.20575. [DOI] [PubMed] [Google Scholar]
  38. Smith C. J., Vasta V., Degerman E., Belfrage P., Manganiello V. C. Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin- and cAMP-dependent activation by phosphorylation. J Biol Chem. 1991 Jul 15;266(20):13385–13390. [PubMed] [Google Scholar]
  39. Solomon S. S., Deaton J., Shankar T. P., Palazzolo M. Cyclic AMP phosphodiesterase in diabetes. Effect of glyburide. Diabetes. 1986 Nov;35(11):1233–1236. doi: 10.2337/diab.35.11.1233. [DOI] [PubMed] [Google Scholar]
  40. Solomon S. S., Steiner M. S., Little W. L., Rao R. H., Sanders L. L., Palazzolo M. R. Inhibitor of calmodulin and cAMP phosphodiesterase activity in BB rats. Diabetes. 1987 Feb;36(2):210–215. doi: 10.2337/diab.36.2.210. [DOI] [PubMed] [Google Scholar]
  41. Solomon S. S., Steiner M. S., Sanders L., Palazzolo M. R. Spontaneous diabetic BB rat: studies of cyclic adenosine 3',5'-monophosphate phosphodiesterase and calmodulin. Endocrinology. 1986 Oct;119(4):1839–1844. doi: 10.1210/endo-119-4-1839. [DOI] [PubMed] [Google Scholar]
  42. Souza S. C., Yamamoto M. T., Franciosa M. D., Lien P., Greenberg A. S. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes. 1998 Apr;47(4):691–695. doi: 10.2337/diabetes.47.4.691. [DOI] [PubMed] [Google Scholar]
  43. Taira M., Hockman S. C., Calvo J. C., Taira M., Belfrage P., Manganiello V. C. Molecular cloning of the rat adipocyte hormone-sensitive cyclic GMP-inhibited cyclic nucleotide phosphodiesterase. J Biol Chem. 1993 Sep 5;268(25):18573–18579. [PubMed] [Google Scholar]
  44. Tang Y., Osawa H., Onuma H., Nishimiya T., Ochi M., Makino H. Improvement in insulin resistance and the restoration of reduced phosphodiesterase 3B gene expression by pioglitazone in adipose tissue of obese diabetic KKAy mice. Diabetes. 1999 Sep;48(9):1830–1835. doi: 10.2337/diabetes.48.9.1830. [DOI] [PubMed] [Google Scholar]
  45. Van Inwegen R. G., Robison G. A., Thompson W. J. Cyclic nucleotide phosphodiesterases and thyroid hormones. J Biol Chem. 1975 Apr 10;250(7):2452–2456. [PubMed] [Google Scholar]
  46. Vasta V., Smith C. J., Calvo J., Belfrage P., Manganiello V. C. Insulin and isoproterenol induce phosphorylation of the particulate cyclic GMP-inhibited, low Km cyclic AMP phosphodiesterase (cGI PDE) in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1070–1075. doi: 10.1016/s0006-291x(05)80299-2. [DOI] [PubMed] [Google Scholar]
  47. Zhang B., Berger J., Hu E., Szalkowski D., White-Carrington S., Spiegelman B. M., Moller D. E. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol. 1996 Nov;10(11):1457–1466. doi: 10.1210/mend.10.11.8923470. [DOI] [PubMed] [Google Scholar]
  48. Zhao A. Z., Zhao H., Teague J., Fujimoto W., Beavo J. A. Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3223–3228. doi: 10.1073/pnas.94.7.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES