Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):345–354.

Reagent or myeloperoxidase-generated hypochlorite affects discrete regions in lipid-free and lipid-associated human apolipoprotein A-I.

C Bergt 1, K Oettl 1, W Keller 1, F Andreae 1, H J Leis 1, E Malle 1, W Sattler 1
PMCID: PMC1220859  PMID: 10677352

Abstract

We have previously shown that the modification of high-density lipoprotein subclass 3 (HDL(3)) by HOCl transformed an anti-atherogenic lipoprotein into a high-uptake form for macrophages and caused a significant impairment of cholesterol efflux capacity [Panzenboeck, Raitmayer, Reicher, Lindner, Glatter, Malle and Sattler (1997) J. Biol. Chem. 272, 29711-29720]. To elucidate the consequences of treatment with OCl(-) on distinct regions in apolipoprotein A-I (apo A-I), lipid-free and lipid-associated apo A-I were modified with increasing molar ratios of NaOCl or HOCl generated by the myeloperoxidase/H(2)O(2)/Cl(-) system. CD analysis revealed a pronounced decrease in alpha-helicity for lipid-free apo A-I modified by NaOCl, whereas lipid-associated apo A-I was less affected. The modification of apo A-I by NaOCl (molar oxidant-to-lipoprotein ratio 6:1) resulted in the formation of two distinct oxidized forms of apo A-I with molecular masses 32 or 48 atomic mass units (a.m.u.) higher than that of native apo A-I, indicating the addition of two or three oxygen atoms to the native protein. HPLC analysis of tryptic digests obtained from lipid-free and lipid-associated apo A-I modified with increasing oxidant-to-apolipoprotein molar ratios revealed a concentration-dependent modification of apo A-I: at a low molar oxidant-to-lipoprotein ratio (5:1) the peaks corresponding to the methionine-containing tryptic peptides T11 (residues 84-88), T16 (residues 108-116) and T22 (residues 141-149), located in the central region of apo A-I, disappeared. Their loss was accompanied by the formation of three oxidation products with a molecular mass 16 a.m.u. higher than that of the native peptides. This indicates the addition of oxygen, most probably caused by the oxidation of Met(86), Met(112) and Met(148) to the corresponding methionine sulphoxides. At a molar NaOCl-to-apo A-I ratio of 10:1 the disappearance of peptides T1 (residues 1-10), T7 (residues 46-59) and T9 (residues 62-77) was accompanied by the occurrence of new peaks 33.5 and 33.1 a.m.u. higher than those of the native peptides. Amino acid analyses of peptides T7 and T9 after modification with NaOCl confirmed that Phe(57) and Phe(71) were primary targets for oxidation by HOCl. GLC-MS analysis of hydrolysates obtained from OCl(-)-modified T7, T9, apo A-I and HDL(3) confirmed that Phe residues are an early target for OCl(-) modification. At molar NaOCl-to-apo A-I ratios of 25:1, the peak areas of peptides T31 (residues 189-195) and T32 (residues 196-206) decreased markedly. Most importantly, incubation of apo A-I with the myeloperoxidase/H(2)O(2)/Cl(-) system (the source of HOCl in vivo) resulted in almost identical modification patterns to those observed with reagent NaOCl.

Full Text

The Full Text of this article is available as a PDF (214.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anantharamaiah G. M., Hughes T. A., Iqbal M., Gawish A., Neame P. J., Medley M. F., Segrest J. P. Effect of oxidation on the properties of apolipoproteins A-I and A-II. J Lipid Res. 1988 Mar;29(3):309–318. [PubMed] [Google Scholar]
  2. Banka C. L., Black A. S., Curtiss L. K. Localization of an apolipoprotein A-I epitope critical for lipoprotein-mediated cholesterol efflux from monocytic cells. J Biol Chem. 1994 Apr 8;269(14):10288–10297. [PubMed] [Google Scholar]
  3. Bergt C., Reicher H., Malle E., Sattler W. Hypochlorite modification of high density lipoprotein: effects on cholesterol efflux from J774 macrophages. FEBS Lett. 1999 Jun 11;452(3):295–300. doi: 10.1016/s0014-5793(99)00677-8. [DOI] [PubMed] [Google Scholar]
  4. Brewer H. B., Jr, Ronan R., Meng M., Bishop C. Isolation and characterization of apolipoproteins A-I, A-II, and A-IV. Methods Enzymol. 1986;128:223–246. doi: 10.1016/0076-6879(86)28070-2. [DOI] [PubMed] [Google Scholar]
  5. Dalton M. B., Swaney J. B. Structural and functional domains of apolipoprotein A-I within high density lipoproteins. J Biol Chem. 1993 Sep 15;268(26):19274–19283. [PubMed] [Google Scholar]
  6. Daugherty A., Dunn J. L., Rateri D. L., Heinecke J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994 Jul;94(1):437–444. doi: 10.1172/JCI117342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eiserich J. P., Cross C. E., Jones A. D., Halliwell B., van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996 Aug 9;271(32):19199–19208. doi: 10.1074/jbc.271.32.19199. [DOI] [PubMed] [Google Scholar]
  8. Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995 Feb;36(2):211–228. [PubMed] [Google Scholar]
  9. Fielding P. E., Kawano M., Catapano A. L., Zoppo A., Marcovina S., Fielding C. J. Unique epitope of apolipoprotein A-I expressed in pre-beta-1 high-density lipoprotein and its role in the catalyzed efflux of cellular cholesterol. Biochemistry. 1994 Jun 7;33(22):6981–6985. doi: 10.1021/bi00188a030. [DOI] [PubMed] [Google Scholar]
  10. Garner B., Waldeck A. R., Witting P. K., Rye K. A., Stocker R. Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem. 1998 Mar 13;273(11):6088–6095. doi: 10.1074/jbc.273.11.6088. [DOI] [PubMed] [Google Scholar]
  11. Garner B., Witting P. K., Waldeck A. R., Christison J. K., Raftery M., Stocker R. Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. J Biol Chem. 1998 Mar 13;273(11):6080–6087. doi: 10.1074/jbc.273.11.6080. [DOI] [PubMed] [Google Scholar]
  12. Gillotte K. L., Davidson W. S., Lund-Katz S., Rothblat G. H., Phillips M. C. Removal of cellular cholesterol by pre-beta-HDL involves plasma membrane microsolubilization. J Lipid Res. 1998 Oct;39(10):1918–1928. [PubMed] [Google Scholar]
  13. Gillotte K. L., Zaiou M., Lund-Katz S., Anantharamaiah G. M., Holvoet P., Dhoest A., Palgunachari M. N., Segrest J. P., Weisgraber K. H., Rothblat G. H. Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J Biol Chem. 1999 Jan 22;274(4):2021–2028. doi: 10.1074/jbc.274.4.2021. [DOI] [PubMed] [Google Scholar]
  14. Hazell L. J., Arnold L., Flowers D., Waeg G., Malle E., Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996 Mar 15;97(6):1535–1544. doi: 10.1172/JCI118576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hazell L. J., Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J. 1993 Feb 15;290(Pt 1):165–172. doi: 10.1042/bj2900165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hazen S. L., Hsu F. F., d'Avignon A., Heinecke J. W. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation. Biochemistry. 1998 May 12;37(19):6864–6873. doi: 10.1021/bi972449j. [DOI] [PubMed] [Google Scholar]
  17. Heinecke J. W., Hsu F. F., Crowley J. R., Hazen S. L., Leeuwenburgh C., Mueller D. M., Rasmussen J. E., Turk J. Detecting oxidative modification of biomolecules with isotope dilution mass spectrometry: sensitive and quantitative assays for oxidized amino acids in proteins and tissues. Methods Enzymol. 1999;300:124–144. doi: 10.1016/s0076-6879(99)00121-4. [DOI] [PubMed] [Google Scholar]
  18. Heinecke J. W. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol. 1997 Oct;8(5):268–274. doi: 10.1097/00041433-199710000-00005. [DOI] [PubMed] [Google Scholar]
  19. Jabs H. U., Assmann G., Greifendorf D., Benninghoven A. High performance liquid chromatography and time-of-flight secondary ion mass spectrometry: a new dimension in structural analysis of apolipoproteins. J Lipid Res. 1986 Jun;27(6):613–621. [PubMed] [Google Scholar]
  20. Jacob J. S., Cistola D. P., Hsu F. F., Muzaffar S., Mueller D. M., Hazen S. L., Heinecke J. W. Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J Biol Chem. 1996 Aug 16;271(33):19950–19956. doi: 10.1074/jbc.271.33.19950. [DOI] [PubMed] [Google Scholar]
  21. Ji Y., Jonas A. Properties of an N-terminal proteolytic fragment of apolipoprotein AI in solution and in reconstituted high density lipoproteins. J Biol Chem. 1995 May 12;270(19):11290–11297. doi: 10.1074/jbc.270.19.11290. [DOI] [PubMed] [Google Scholar]
  22. Jonas A. Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins. Biochim Biophys Acta. 1991 Jul 30;1084(3):205–220. doi: 10.1016/0005-2760(91)90062-m. [DOI] [PubMed] [Google Scholar]
  23. Jonas A. Reconstitution of high-density lipoproteins. Methods Enzymol. 1986;128:553–582. doi: 10.1016/0076-6879(86)28092-1. [DOI] [PubMed] [Google Scholar]
  24. Katrantzis M., Baker M. S., Handley C. J., Lowther D. A. The oxidant hypochlorite (OCl-), a product of the myeloperoxidase system, degrades articular cartilage proteoglycan aggregate. Free Radic Biol Med. 1991;10(2):101–109. doi: 10.1016/0891-5849(91)90003-l. [DOI] [PubMed] [Google Scholar]
  25. Kettle A. J. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett. 1996 Jan 22;379(1):103–106. doi: 10.1016/0014-5793(95)01494-2. [DOI] [PubMed] [Google Scholar]
  26. Kettle A. J., Winterbourn C. C. Assays for the chlorination activity of myeloperoxidase. Methods Enzymol. 1994;233:502–512. doi: 10.1016/s0076-6879(94)33056-5. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Leeuwenburgh C., Rasmussen J. E., Hsu F. F., Mueller D. M., Pennathur S., Heinecke J. W. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997 Feb 7;272(6):3520–3526. doi: 10.1074/jbc.272.6.3520. [DOI] [PubMed] [Google Scholar]
  29. Luchoomun J., Theret N., Clavey V., Duchateau P., Rosseneu M., Brasseur R., Denefle P., Fruchart J. C., Castro G. R. Structural domain of apolipoprotein A-I involved in its interaction with cells. Biochim Biophys Acta. 1994 Jun 2;1212(3):319–326. doi: 10.1016/0005-2760(94)90206-2. [DOI] [PubMed] [Google Scholar]
  30. Malle E., Hazell L., Stocker R., Sattler W., Esterbauer H., Waeg G. Immunologic detection and measurement of hypochlorite-modified LDL with specific monoclonal antibodies. Arterioscler Thromb Vasc Biol. 1995 Jul;15(7):982–989. doi: 10.1161/01.atv.15.7.982. [DOI] [PubMed] [Google Scholar]
  31. Meng Q. H., Bergeron J., Sparks D. L., Marcel Y. L. Role of apolipoprotein A-I in cholesterol transfer between lipoproteins. Evidence for involvement of specific apoA-I domains. J Biol Chem. 1995 Apr 14;270(15):8588–8596. doi: 10.1074/jbc.270.15.8588. [DOI] [PubMed] [Google Scholar]
  32. Oram J. F., Yokoyama S. Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res. 1996 Dec;37(12):2473–2491. [PubMed] [Google Scholar]
  33. Panzenboeck U., Raitmayer S., Reicher H., Lindner H., Glatter O., Malle E., Sattler W. Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins. J Biol Chem. 1997 Nov 21;272(47):29711–29720. doi: 10.1074/jbc.272.47.29711. [DOI] [PubMed] [Google Scholar]
  34. Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
  35. Roberts L. M., Ray M. J., Shih T. W., Hayden E., Reader M. M., Brouillette C. G. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I. Biochemistry. 1997 Jun 17;36(24):7615–7624. doi: 10.1021/bi962952g. [DOI] [PubMed] [Google Scholar]
  36. Rogers D. P., Brouillette C. G., Engler J. A., Tendian S. W., Roberts L., Mishra V. K., Anantharamaiah G. M., Lund-Katz S., Phillips M. C., Ray M. J. Truncation of the amino terminus of human apolipoprotein A-I substantially alters only the lipid-free conformation. Biochemistry. 1997 Jan 14;36(2):288–300. doi: 10.1021/bi961876e. [DOI] [PubMed] [Google Scholar]
  37. Rogers D. P., Roberts L. M., Lebowitz J., Engler J. A., Brouillette C. G. Structural analysis of apolipoprotein A-I: effects of amino- and carboxy-terminal deletions on the lipid-free structure. Biochemistry. 1998 Jan 20;37(3):945–955. doi: 10.1021/bi9713512. [DOI] [PubMed] [Google Scholar]
  38. Sattler W., Mohr D., Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol. 1994;233:469–489. doi: 10.1016/s0076-6879(94)33053-0. [DOI] [PubMed] [Google Scholar]
  39. Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., Anantharamaiah G. M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992 Feb;33(2):141–166. [PubMed] [Google Scholar]
  40. Sigalov A. B., Stern L. J. Enzymatic repair of oxidative damage to human apolipoprotein A-I. FEBS Lett. 1998 Aug 21;433(3):196–200. doi: 10.1016/s0014-5793(98)00908-9. [DOI] [PubMed] [Google Scholar]
  41. Sorci-Thomas M. G., Curtiss L., Parks J. S., Thomas M. J., Kearns M. W., Landrum M. The hydrophobic face orientation of apolipoprotein A-I amphipathic helix domain 143-164 regulates lecithin:cholesterol acyltransferase activation. J Biol Chem. 1998 May 8;273(19):11776–11782. doi: 10.1074/jbc.273.19.11776. [DOI] [PubMed] [Google Scholar]
  42. Stadtman E. R., Berlett B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol. 1997 May;10(5):485–494. doi: 10.1021/tx960133r. [DOI] [PubMed] [Google Scholar]
  43. Stadtman E. R. Role of oxidized amino acids in protein breakdown and stability. Methods Enzymol. 1995;258:379–393. doi: 10.1016/0076-6879(95)58057-3. [DOI] [PubMed] [Google Scholar]
  44. Sviridov D., Pyle L., Fidge N. Identification of a sequence of apolipoprotein A-I associated with the efflux of intracellular cholesterol to human serum and apolipoprotein A-I containing particles. Biochemistry. 1996 Jan 9;35(1):189–196. doi: 10.1021/bi9507544. [DOI] [PubMed] [Google Scholar]
  45. Swaney J. B. Properties of lipid . apolipoprotein association products. Complexes of dimyristoyl phosphatidylcholine and human apo A-1. J Biol Chem. 1980 Feb 10;255(3):877–881. [PubMed] [Google Scholar]
  46. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  47. Zhao F., Ghezzo-Schöneich E., Aced G. I., Hong J., Milby T., Schöneich C. Metal-catalyzed oxidation of histidine in human growth hormone. Mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997 Apr 4;272(14):9019–9029. doi: 10.1074/jbc.272.14.9019. [DOI] [PubMed] [Google Scholar]
  48. von Eckardstein A., Walter M., Holz H., Benninghoven A., Assmann G. Site-specific methionine sulfoxide formation is the structural basis of chromatographic heterogeneity of apolipoproteins A-I, C-II, and C-III. J Lipid Res. 1991 Sep;32(9):1465–1476. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES