Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):385–391.

Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart.

H L Kirschenlohr 1, A A Grace 1, J I Vandenberg 1, J C Metcalfe 1, G A Smith 1
PMCID: PMC1220864  PMID: 10677357

Abstract

Spectroscopic Ca(2+)-indicators are thought to report values of free intracellular Ca(2+) concentration ([Ca(2+)](i)) that may differ from unperturbed values because they add to the buffering capacity of the tissue. To check this for the heart we have synthesized a new (19)F-labelled NMR Ca(2+) indicator, 1, 2-bis-[2-bis(carboxymethyl)amino-4,5-difluorophenoxy]ethane ('4, 5FBAPTA'), with a low affinity (K(d) 2950 nM). The new indicator and four previously described (19)F-NMR Ca(2+) indicators 1,2-bis-[2-(1 - carboxyethyl)(carboxymethyl)amino - 5 - fluorophenoxy]ethane ('DiMe-5FBAPTA'), 1, 2-bis-[2-(1-carboxyethyl)(carboxymethyl)amino-4-fluorophenoxy]ethane ('DiMe-4FBAPTA'), 1, 2-bis-[2-bis(carboxymethyl)amino-5-fluorophenoxy]ethane ('5FBAPTA') and 1, 2-bis-[2-bis(carboxymethyl)amino-5-fluoro-4-methylphenoxy]ethane ('MFBAPTA'), with dissociation constants for Ca(2+) ranging from 46 to 537 nM, have been used to measure [Ca(2+)](i), over the range from less than 100 nM to more than 3 microM, in Langendorff-perfused ferret hearts (30 degrees C, pH 7.4, paced at 1.0 Hz) by (19)F-NMR spectroscopy. Loading hearts with indicators resulted in buffering of the Ca(2+) transient. The measured end-diastolic and peak-systolic [Ca(2+)](i) were both positively correlated with indicator K(d). The positive correlations between indicator K(d) and the measured end-diastolic and peak-systolic [Ca(2+)](i) were used to estimate the unperturbed end-diastolic and peak-systolic [Ca(2+)](i) by extrapolation to K(d)=0 (diastolic) and to K(d)=infinity (systolic) respectively. The extrapolated values in the intact beating heart were 161 nM for end-diastolic [Ca(2+)](i) and 2650 nM for peak-systolic [Ca(2+)](i), which agree well with values determined from single cells and muscle strips.

Full Text

The Full Text of this article is available as a PDF (132.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backx P. H., Ter Keurs H. E. Fluorescent properties of rat cardiac trabeculae microinjected with fura-2 salt. Am J Physiol. 1993 Apr;264(4 Pt 2):H1098–H1110. doi: 10.1152/ajpheart.1993.264.4.H1098. [DOI] [PubMed] [Google Scholar]
  2. Balke C. W., Egan T. M., Wier W. G. Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells. J Physiol. 1994 Feb 1;474(3):447–462. doi: 10.1113/jphysiol.1994.sp020036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grace A. A., Kirschenlohr H. L., Metcalfe J. C., Smith G. A., Weissberg P. L., Cragoe E. J., Jr, Vandenberg J. I. Regulation of intracellular pH in the perfused heart by external HCO3- and Na(+)-H+ exchange. Am J Physiol. 1993 Jul;265(1 Pt 2):H289–H298. doi: 10.1152/ajpheart.1993.265.1.H289. [DOI] [PubMed] [Google Scholar]
  4. Harding D. P., Smith G. A., Metcalfe J. C., Morris P. G., Kirschenlohr H. L. Resting and end-diastolic [Ca2+]i measurements in the Langendorff-perfused ferret heart loaded with a 19F NMR indicator. Magn Reson Med. 1993 May;29(5):605–615. doi: 10.1002/mrm.1910290505. [DOI] [PubMed] [Google Scholar]
  5. Kihara Y., Grossman W., Morgan J. P. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res. 1989 Oct;65(4):1029–1044. doi: 10.1161/01.res.65.4.1029. [DOI] [PubMed] [Google Scholar]
  6. Kirschenlohr H. L., Grace A. A., Clarke S. D., Shachar-Hill Y., Metcalfe J. C., Morris P. G., Smith G. A. Calcium measurements with a new high-affinity n.m.r. indicator in the isolated perfused heart. Biochem J. 1993 Jul 15;293(Pt 2):407–411. doi: 10.1042/bj2930407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kirschenlohr H. L., Metcalfe J. C., Morris P. G., Rodrigo G. C., Smith G. A. Ca2+ transient, Mg2+, and pH measurements in the cardiac cycle by 19F NMR. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9017–9021. doi: 10.1073/pnas.85.23.9017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lamont C., Eisner D. A. The sarcolemmal mechanisms involved in the control of diastolic intracellular calcium in isolated rat cardiac trabeculae. Pflugers Arch. 1996 Oct;432(6):961–969. doi: 10.1007/s004240050223. [DOI] [PubMed] [Google Scholar]
  9. Lee H. C., Smith N., Mohabir R., Clusin W. T. Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7793–7797. doi: 10.1073/pnas.84.21.7793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Levy L. A., Murphy E., London R. E. Synthesis and characterization of 19F NMR chelators for measurement of cytosolic free Ca. Am J Physiol. 1987 Apr;252(4 Pt 1):C441–C449. doi: 10.1152/ajpcell.1987.252.4.C441. [DOI] [PubMed] [Google Scholar]
  11. Lorell B. H., Apstein C. S., Cunningham M. J., Schoen F. J., Weinberg E. O., Peeters G. A., Barry W. H. Contribution of endothelial cells to calcium-dependent fluorescence transients in rabbit hearts loaded with indo 1. Circ Res. 1990 Aug;67(2):415–425. doi: 10.1161/01.res.67.2.415. [DOI] [PubMed] [Google Scholar]
  12. Marban E., Kitakaze M., Kusuoka H., Porterfield J. K., Yue D. T., Chacko V. P. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci U S A. 1987 Aug;84(16):6005–6009. doi: 10.1073/pnas.84.16.6005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Metcalfe J. C., Hesketh T. R., Smith G. A. Free cytosolic Ca2+ measurements with fluorine labelled indicators using 19FNMR. Cell Calcium. 1985 Apr;6(1-2):183–195. doi: 10.1016/0143-4160(85)90043-0. [DOI] [PubMed] [Google Scholar]
  14. Noble D., Powell T. The slowing of Ca2+ signals by Ca2+ indicators in cardiac muscle. Proc Biol Sci. 1991 Nov 22;246(1316):167–172. doi: 10.1098/rspb.1991.0140. [DOI] [PubMed] [Google Scholar]
  15. O'Rourke B., Reibel D. K., Thomas A. P. High-speed digital imaging of cytosolic Ca2+ and contraction in single cardiomyocytes. Am J Physiol. 1990 Jul;259(1 Pt 2):H230–H242. doi: 10.1152/ajpheart.1990.259.1.H230. [DOI] [PubMed] [Google Scholar]
  16. Poenie M., Alderton J., Steinhardt R., Tsien R. Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science. 1986 Aug 22;233(4766):886–889. doi: 10.1126/science.3755550. [DOI] [PubMed] [Google Scholar]
  17. Schanne F. A., Dowd T. L., Gupta R. K., Rosen J. F. Lead increases free Ca2+ concentration in cultured osteoblastic bone cells: simultaneous detection of intracellular free Pb2+ by 19F NMR. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5133–5135. doi: 10.1073/pnas.86.13.5133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith G. A., Hesketh R. T., Metcalfe J. C., Feeney J., Morris P. G. Intracellular calcium measurements by 19F NMR of fluorine-labeled chelators. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7178–7182. doi: 10.1073/pnas.80.23.7178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Song S. K., Hotchkiss R. S., Neil J., Morris P. E., Jr, Hsu C. Y., Ackerman J. J. Determination of intracellular calcium in vivo via fluorine-19 nuclear magnetic resonance spectroscopy. Am J Physiol. 1995 Aug;269(2 Pt 1):C318–C322. doi: 10.1152/ajpcell.1995.269.2.C318. [DOI] [PubMed] [Google Scholar]
  20. Spurgeon H. A., Stern M. D., Baartz G., Raffaeli S., Hansford R. G., Talo A., Lakatta E. G., Capogrossi M. C. Simultaneous measurement of Ca2+, contraction, and potential in cardiac myocytes. Am J Physiol. 1990 Feb;258(2 Pt 2):H574–H586. doi: 10.1152/ajpheart.1990.258.2.H574. [DOI] [PubMed] [Google Scholar]
  21. Steenbergen C., Murphy E., Levy L., London R. E. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res. 1987 May;60(5):700–707. doi: 10.1161/01.res.60.5.700. [DOI] [PubMed] [Google Scholar]
  22. Trafford A. W., Díaz M. E., O'Neill S. C., Eisner D. A. Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J Physiol. 1995 Nov 1;488(Pt 3):577–586. doi: 10.1113/jphysiol.1995.sp020991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
  24. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES